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Abstract:  Sentence-final particles serve an important role in spoken Japanese, because they express the 
speaker's mental attitudes toward a proposition and/or an interlocutor. They are acquired at early ages and 
occur very frequently in everyday conversation. However, there has been no proposal for a computational 
model of the acquisition of sentence-final particles. In this paper, we report on a study in which a robot 
learned how to react to utterances that have a sentence-final particle and gave appropriate responses based 
on rewards given by an interlocutor. Our experimental results show that the robot learned to react more or 
less correctly in response to yo, which expresses the speaker's intention to communicate new information, 
and to ne, which denotes the speaker's desire to confirm that some information is shared. The next 
research target for the learning system is the acquisition of inner information processing such as word 
learning, using the learned actions as a guide. 

 

1 Introduction 
Sentence-final particles serve the important role of 

expressing the speaker's mental attitudes. They are 
acquired at early ages and occur very frequently in 
everyday conversation. Research on the computational 
model of language acquisition is rapidly increasing. 
However, to the best of our knowledge, there has been no 
proposal for a computational model of the acquisition of 
sentence-final particles. 

The study reported on in this paper dealt with the 
following two usages of sentence-final particles yo and 
ne at the first onset, (although there are several other 
usages of yo and ne): 
 The informing usage of yo: informing the listener of 

information that seems new to the listener [1]. 
 The agreement requesting usage of ne: requesting 

an agreement on information that seems to be 
shared between the speaker and the listener [1]. 

The purpose of the study was to get a robot to learn a 
series of appropriate responses to a speaker’s mental 
attitude expressed with a sentence-final particle. We used 
a robot, instead of a virtual agent, because the responses 
to be learned included the gaze direction, which is 
difficult for a virtual agent to express accurately. The 
robot learned appropriate responses based on rewards 
given by its interlocutor. 

 

In general, responses from a robot include the 
following: 
1. physical reactions such as a nod, turning of its face 

in the direction of the referent of the utterance, etc. 
2. utterances 
3. inner information processing such as memorizing 

new information received, etc. 
Among the three items listed, 1 and 2 are observable by 
an interlocutor; however, item 3 cannot be directly 
observed, which makes it difficult for him/her to give 
appropriate rewards in accordance with the robot’s 
response, and inappropriate rewards make it difficult for 
the robot to learn appropriate responses. This study deals 
with items 1 and 3, and does not cover item 2, but we 
believe that utterances can be learned as well as physical 
reactions because both are observable. 

The remainder of this paper is organized as follows. 
We describe our computational model for the acquisition 
of physical reactions to sentence-final particles and 
demonstrate the learning capability of our proposed 
model in Section 2. We explain our idea for learning the 
invisible inner processing in Section 3. Finally, we 
outline future work and conclude this paper in Section 4.  
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2 Acquisition of Appropriate Physical 
Reactions 

2.1 Computational Model 

In our study, the robot learned appropriate responses to 
the two usages of sentence-final particles yo and ne based 
on the rewards given by an interlocutor. The appropriate 
response is not necessarily a single action, but generally 
an action sequence that does not have the Markov 
property. In order to avoid tackling a non-Markovian 
process, we formulated the problem as a simple 
reinforcement learning (RL) process in which an action 
sequence is considered as an action. 

State in RL consists of the utterance of the interlocutor, 
the referents of the utterance, objects within the eyesight 
of the robot, and others. For simplicity, we can assume 
that the rewards are given every time without fail, and 
exclude delayed rewards, which simplify the action value 
update as follows: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠,𝑎) + 𝛼�𝑟 − 𝑄(𝑠,𝑎)�, 
where 𝑄(𝑠, 𝑎) is an action-value function, that is, the 
value of taking action 𝑎 in state 𝑠, 𝛼 is the learning 
rate, and 𝑟 is the reward. 

 

2.2 Experiments 
We conducted three experiments: The robot learned (1) 

the informing usage of yo, specifically, the usage that 
relates the name of an object (Exp. 1), (2) the agreement 
requesting usage of ne (Exp. 2), and (3) the informing 
usage of yo, specifically, the usage that relates the 
existence of an object (Exp. 3). 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Experimental environment for the acquisition 

experiments. The participant talks to the robot using a 
sentence-final particle, and the robot learns how to react 

to it. 

Fig. 1 shows the experimental environment utilized. 
The general procedure used is as follows: The participant 
talks to the robot using a sentence-final particle, and 
he/she indicates the associated object with his/her hand 
by touching the object or pointing to it. The robot  
recognizes the word uttered using registered-word voice 
recognition, and identifies the object being referred to 
with Kinect by detecting the interlocutor’s hand. It then 
reacts by randomly combining at most three of the 
following four elemental actions: nodding, turning its 
face toward the interlocutor’s face, turning its face 
toward the object in question, or turning its face toward a 
different object. The participant gives a reward of 1 or 
−1 to the robot using a mouse, and the robot learns 
which actions result in the most reward using Q-learning. 
Learning rate α was set to 0.1 in our experiments. 

 
 

(a) Exp. 1         (b) Exp. 2         (c) Exp.3 
 

Fig. 2: Examples of the sentence uttered in each 
experiment. 

 
 
Fig. 2 gives examples of the sentence uttered in each 

experiment. The experiments conducted were as follows: 
Experiment 1: The participant was informed that the 

robot does not know the names of the objects on the 
table. The participant said to the robot “mikan da yo” 
(which means, “I want to inform you that this is an 
orange”) when the robot was looking at the orange, 
as shown in Fig. 2(a); or “ringo da yo” (which 
means, “I want to inform you that this is an apple”) 
when the robot was looking at the apple. 

Experiment 2: The participant was informed that the 
robot knows the names of the objects on the table. 
The participant said to the robot “ringo da ne” 
(which means, “I want to confirm that we both 
believe that this is an apple”) when the robot was 
looking at the apple, as shown in Fig. 2(b); or 



“mikan da ne” (which means, “I want to confirm 
that we both believe that this is an orange”) when 
the robot was looking at the orange. 

Experiment 3: The participant was informed that the 
robot knows the names of the objects on the table. 
The participant said to the robot “mikan da yo” 
(which means, “I want to inform you that an orange 
is over here”) when the robot was looking at the 
apple, as shown in Fig. 2(c); or “ringo da yo” 
(which means, “I want to inform you that an apple is 
over here”) when the robot was looking at the 
orange. 

 

2.3 Results and Discussion 
Each of eight participants (five male and three female 

students) uttered 10 sentences in each experiment, which 
generated 80 pieces of learning data in total for each 
scenario. Offline learning was executed. The main 
learning results are shown in Table 1 (see [2] for more 
details). For each experiment, action sequences that have 
the top five action values are shown in descending order, 
and the bottom five in ascending order. In ordinary 
reinforcement learning, action sequences with high 
action values tend to be produced by the robot, whereas 
those with low values are seldom produced. 

The results indicate that the robot learned to react 
more or less correctly in response to sentence-final 
particles yo and ne. Several action sequences resulted in 
the opposite action values to those that were expected by 
us; these are indicated by colored cells in the table. 

We found that there were individual differences in the 
evaluation of the robot’s actions, and the aforementioned 
reversed evaluations were mostly observed for specific 
participants. This means that adaptation to an individual 
user is worthwhile. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Main results of action-value learning. Action 
sequences consisted of at most three elemental actions. 
“Face” represents the elemental action of turning the 
robot’s face toward the interlocutor’s face; “object” 
represents the action of turning toward the relevant 

object; and “other” signifies the action of turning toward 
another object. 

 
Exp. 1: Instructing names 

Action sequences with the 
top five action values 

Action sequences with the 
bottom five action values 

1st 2nd 3rd 1st 2nd 3rd 
nod object object other face face 

object nod object face face face 
nod other object object object other 

other nod object nod object other 
nod other other other face - 

 
Exp. 2: Requesting agreement 

Action sequences with the 
top five action values 

Action sequences with the 
bottom five action values 

1st 2nd 3rd 1st 2nd 3rd 
nod face - object other other 
nod other object object face face 
nod nod nod other object other 
face face nod other object object 
face nod nod other object - 

 
Exp. 3: Informing existence 

Action sequences with the 
top five action values 

Action sequences with the 
bottom five action values 

1st 2nd 3rd 1st 2nd 3rd 
face nod object nod nod other 

object nod other other face face 
other object nod nod nod nod 
face other - nod nod object 
face other nod nod face face 
 
 

3 Learning Invisible Inner Processing 
The robot described in the previous sections learned 

appropriate reactions such as turning toward an apple and 
nodding on hearing a sentence containing a 
sentence-final particle. However, it only acquires 
outward behaviors, and does not learn inward processing 
such as remembering the name of an object. 

In this section, we explain our idea for learning inward 
processing as well as outward behaviors. Learning inner 



processing from rewards is much more difficult than 
learning visible behaviors. This is because accurate 
rewards are not always given for invisible inner 
processing. For example, it is probable that even though 
a reward was given when the robot nodded, it 
subsequently turns out that the robot does not actually 
remember the name. 

In order to resolve the issue, we plan to employ the 
following policies: (1) the robot should learn from 
delayed rewards; and (2) the state space of learning, i.e., 
the number of states and actions, should be as small as 
possible. We will employ the latter policy because it is 
difficult to obtain sufficient data for complicated learning 
when the data comes only from interaction with humans. 

We thus set out a simple state space, shown in Fig. 3, 
in the first place. The most appropriate action in each 
state is learned as in ordinary reinforcement learning 
(RL). An important difference from the standard RL is 
the alternate actions between a human and a robot. 
Human actions are represented by dashed arrows and 
robot’s actions are expressed with solid arrows in Fig. 3, 
and both actions cause state transitions. 

 
 

 
Fig. 3: State transition diagram. Dashed arrows 

represent human actions, and solid arrows depict robot’s 
actions that include inner processing. 

 
 
One of the robot’s actions in Fig. 3, “memorize and 

nod,” is the act of memorizing a pair of a word, such as 
apple, which is a segment of speech, and an image of an 

object in front of its eyes, and nodding. “Compare and 
move neck according to the result” is the act of nodding 
if the currently presented word-image pair is the same as 
the pair in memory, shaking its head if the current pair 
disagrees with the stored pair, or no neck motion if there 
are no related pairs in memory. 

While the robot acts according to the learned action 
values as in the standard RL, human actions are 
independent of the action values in the state space. The 
action values of human actions are not referred to by the 
human, but are used in the update of those of the robot’s 
actions (See Fig. 4).  

We use the learning algorithm shown in Fig. 4, which 
is a modified version of Sarsa(λ) [3]. The modification 
includes the following: (1) alternate actions between the 
human and the robot; and (2) use of a replacing trace [3] 
instead of an eligibility trace. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Learning algorithm for inward processing: A 
modified version of Sarsa(λ) [3]. 

 
 
 

Initialize 𝑄(𝑠,𝑎) = 0; 𝑒(𝑠, 𝑎) = 0, for all 𝑠, 𝑎 
Initialize 𝑠 = 𝑠0 
Repeat 
  Human’s turn: 
   The human takes action 𝑎 
   Observe 𝑟, 𝑠′;  𝑟 = 0 for human actions 
   Choose 𝑎′ from 𝑠′ using policy derived from 𝑄 
   𝛿 ← 𝑟 + 𝛾𝛾(𝑠′,𝑎′ ) −𝑄(𝑠,𝑎) 
   𝑒(𝑠, 𝑎 ) ← 1 
   For all 𝑠, 𝑎: 
      𝑄(𝑠,𝑎) ← 𝑄(𝑠,𝑎) + 𝛼𝛼𝛼(𝑠,𝑎) 
      𝑒(𝑠,𝑎) ← 𝛾𝛾𝛾(𝑠, 𝑎) 
   𝑠 ← 𝑠′; 𝑎 ← 𝑎′ 
  Robot’s turn: 
   Take action 𝑎 
   Observe 𝑟, 𝑠′ 
   The human chooses 𝑎′ from 𝑠′ 
   𝛿 ← 𝑟 + 𝛾𝛾(𝑠′,𝑎′ ) −𝑄(𝑠,𝑎) 
   𝑒(𝑠, 𝑎 ) ← 1 
   For all 𝑠, 𝑎: 
      𝑄(𝑠,𝑎) ← 𝑄(𝑠,𝑎) + 𝛼𝛼𝛼(𝑠,𝑎) 
      𝑒(𝑠,𝑎) ← 𝛾𝛾𝛾(𝑠, 𝑎) 
   𝑠 ← 𝑠′; 𝑎 ← 𝑎′ 
until the end of episode 



4 Conclusions and Future Work 
In this paper, we proposed a computational model for 

physical reaction acquisition. Our experimental results 
indicate that the robot learned to react more or less 
correctly in response to yo, which expresses the speaker’s 
intention to communicate new information, and to ne, 
which denotes the speaker’s desire to confirm that some 
information has been shared. 

We then outlined a learning algorithm for inward  
information processing as well as outward physical 
behaviors. We plan to conduct experiments to test 
whether the meaning of both the sentence-final particles 
and nouns can be learned at the same time. We also plan 
to investigate the relation between the complexity of the 
state space and the amount of interaction necessary for 
learning. 
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