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A user working with his/her desktop computer would benefit from notifications (e.g., e-mails, micro-blogs, and
application updates) being given at adequate times when he/she is interruptible. To do so, a notification system
needs to determine the user’s state of activity. In this paper, we propose a novel method for estimating user states
with a pressure sensor on a desk. We use a lattice-like pressure sensor sheet and distinguish between two simple
user states: interruptible or not. The pressure can be measured without the user being aware of it, and changes
in the pressure reflect useful information like typing, an arm resting on the desk, mouse operation, and so on.
We carefully developed features which can be extracted from the sensed raw data and used a machine learning
technique to identify the user’s interruptibility. We conducted experiments for two different tasks to evaluate the
accuracy of our proposed method and obtained promising results.

1. Introduction

Figure 1: Various information notifications

In the current office environment connected to the Internet, a
user tends to get a lot of notifications[6] in the form of e-mails,
micro-blog, instant messages, application update alerts and so on
like in Figure 1.

A significant problem with such notifications is that they arrive
as they are sent, i.e., without the system being aware of whether
the user has time to receive them or not. If messages arrive at inop-
portune times, they can cause serious stress and reduce the user’s
productivity [1]. One way of alleviating this problem would be to
control the notification period in accordance with the user’s state
of activity. In other words, this means a system needs to estimate
whether a user is interruptible or not, and send information only
when he/she are interruptible [7].

There are other approaches that do not estimate whether the user
is interruptible. A peripheral display [8] is one such approach.
In such studies, notification is indicated in the user’s peripheral
field, such as in a sub-window in parallel with a main window used
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for a main task, and a user can unconsciously recognize the con-
tent of the notification while focusing on the main task. However,
with this approach, it is hard to determine the positions, size, and
color of the notification’s window. Estimating a user’s state has the
advantage of being useful for other purposes besides notification,
such as estimating emotional states.

Hence, a notification system needs to monitor user behaviors
like typing, operating a mouse, and so on to estimate whether
he/she is interruptible or not. There are a number of studies on
systems that use the frequency of keyboard strokes and mouse op-
erations [4]. However, these methods can not be applied to cases
in which the frequency does not reflect the user’s interruptibility or
when the user does not use such input equipment. There are also
estimation methods that use additional sensors like a web camera
[5]. However, these methods need to monitor user behavior by
watching their faces and bodies, and thus they could cause psy-
chological stress on the user.

In this study, we developed a novel method for estimating a
user’s interruptibility by measuring tabletop pressure. At a desk
with a PC, there are changes in pressure on the tabletop caused by
the forces of various user behaviors including typing, resting one’s
arm on the desk, and so on. We considered that useful information
for estimating the user’s interruptibility can be extracted from such
slight changes in tabletop pressure. However, there are only a few
studies on estimating interruptibility by using tabletop pressure.
First, we carefully identified features adequate for the estimation.
Then, we compared three machine learning techniques to classify
a user’s interruptibility. Eventually, we conducted experiments to
evaluate the accuracy of our method in two different tasks.

2. Estimating a user’s interruptibility by
measuring tabletop pressure

For measuring the tabletop pressure, we spread a pressure sensor
sheet having measurement points in a reticular pattern on a table-
top. We assumed that a the user does all his/her work on the sheet
and that all objects on the tabletop are placed on it. We investi-
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Figure 2: LL-Sensor.

Figure 3: Output of sensor.

gated the forces involved in typing, resting one’s arm, and placing
objects on the tabletop, and we found that we need a sensor sheet
about 1 meter square with pressure gradation ability of 10 grams.

Hence, we used the LL-sensor (Xiroku Co., Ltd ) in Figure 2.
This sensor leverages the feature of mutual induction. It is 600
mm square, and its resolution is 10 mm square. It outputs not a
physical quantity but a unique value. Figure 3 shows the output
of the LL-sensor in a heat-map fashion. The white unit means
the lowest value and the blue, green, red, and black means higher
values. A keyboard is placed on the square area, and the user’s
arms are placed on the elliptical areas.

2.1 Features Extraction for Interruptibility Estimation
We extract features from the raw pressure data. In particular,

we use key pressing force weight, location, and changes in them
as features. We assume that the objects on a tabletop are only the
keyboard of the PC and the users’ arms. However, we can relax
this restriction by developing procedures to detect other objects
like a mug, a book, and so on. We considered typical tasks on
a tabletop to be typing and mouse-operation and that the features
related to the two tasks should be extracted. Also, the information
related to arm regions is useful because it might change due to
a user’s busyness. Thus, we introduce 24 features: the pressure,
the region size, the x/y-coordinates of the center of gravity of a
keyboard’s left/right/front feet regions, the mouse region and the
left/right arm regions.

We used a simple pattern matching algorithm to automatically
extract the features from the raw pressure data. First, templates for
the regions pressed on by the keyboard’s feet and the mouse are
manually obtained, and they are normalized. Then, by scanning
the whole area with the templates, the regions corresponding to the
templates are identified. Eventually the pressure, the region size,
and the x/y-coordinates of the center of gravity for the regions are

calculated.
To extract left/right-arm regions, the whole data are scanned

from the left/right-bottom to the right/left-top and the regions hav-
ing pressure values over a threshold are extracted. Then the pres-
sure, the region size, and the x/y-coordinates of the center of grav-
ity for the regions are calculated.

The raw pressure data are obtained from a LL-sensor every
30ms, and the features can be quickly computed anytime with an
average of nine frames data 1 sec before.

2.2 Classifying User Interruptibility
After extracting features from the raw data, we needed to iden-

tify user’s interruptibility from the data. We used classification
learning to classify the state of the user into interruptible or unin-
terruptible.

In the experiments, we try to apply state-of-the-arts classifi-
cation learning algorithms: random forests [2], SVM (Support
Vector Machine) with a kernel [10], and a traditional algorithm,
C4.5 [9]. We can expect the classification accuracy of the random
forests and SVM to be higher than the C4.5. However, the C4.5
has human readability, so it is easily interpreted. We apply these
classification learning algorithms and compare the results in the
experiments.

3. Experiments
3.1 Experimental Environment and Tasks

We built a simplified desk work environment to eliminate com-
plicated factors. Figure 4 is an overview of it. A participant sits
down in front of a desk, and the monitor shows a task window.

We use two typical tabletop tasks: a typing task and a mouse
operation task. In the typing task, an experimenter required par-
ticipants to type the scrolling display of characters as correctly as
possible (Figure 5(a)), and their typing was recorded. The scroll
speed could be used to control the task difficulty. When typing, the
system asked them whether they were interruptible or uninterrupt-
ible by displaying a notification dialog in the center (Figure 6).
At that time, participants step on the foot switch of left side to
accept it (interruptible), and step on the foot switch of right side
to reject it (uninterruptible). These judgments were used as class
labels for training data. The “accept” and “reject” corresponded
to “interruptible” and “uninterruptible.” The notification window
closed after the answer. The participants were asked to suppose
that the notifications provided them with small amounts of infor-
mation like weather reports and news. These procedures were ex-
plained to participants in the instructions.

In the mouse operation task, the task window in Figure 5(b)
was displayed, and a small blue square appeared and disappeared
repeatedly at random positions. This appearance cycle could be
used to control the task difficulty. Participants were required to
repeatedly click the small blue squire during it appeared. The no-
tification procedures were the same as the typing task.

3.2 Participants and Experimental Procedures
The participants were 20 students and staff members in the in-

formation science department (ages ranging from 23 to 51, mean
35.4, S.D. = 11.7), and they consisted of 10 males and 10 females.

To obtain both accept and reject data, we needed to set hard
and easy phases in the two tasks. In the hard phase, participants
have to achieve the task, so they tend to reject the notifications
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Figure 4: Experimental environment.

(a) Typing. (b) Mouse operation.

Figure 5: Task windows for two tasks.

(uninterruptible), and in the easy phase, they tend to accept them
(interruptible). Before trials of each participant, an experimenter
manually set the both phase by investigating his/her typing and
mouse operation ability.

For each participant, two trials of the typing task and the mouse
operation task were given, and the order of the four trials was
counterbalanced. In each trial, the hard and easy phases were al-
ternately applied for one minute, and each trial was five minutes
long, consisting of five phases. Eventually, the total time for a
participant was about 20 minutes. In each trial, notifications were
displayed every 20 sec as described before.

We used random forests, SVM (a RBF kernel, γ = 0.0) and
C4.5 (confidence factor = 0.25) implemented on weka3.6.4 ∗1 as
classification learning algorithms.

4. Experimental Results
Table 1 shows part of the data obtained for the left arm in the

typing task. The amount of all the data obtained from the two tasks
was 1119 (interruptible: 722, uninterruptible: 477), and those of
the typing and mouse operation tasks were respectively 600 (in-
terruptible: 333, uninterruptible: 269) and 599 (interruptible: 389,

Do you accept this notification?Accept Reject

Figure 6: Notification window in the typing task.

∗1 http://www.cs.waikato.ac.nz/ml/weka/

Table 1: Data examples (left arm).

Area Pressure COGx COGy Class
7.6 20.9 2.8 20.1 accept
4.9 24.6 1.9 20.8 reject
3.7 8.8 3.0 39.0 accept
15.1 22.4 12.1 16.5 reject

Table 2: Accuracy of estimation of the three classification learning
algorithms (The best in bold).

TP Rate [%]
CL algorithm Typing Mouse op. Whole

SVM 76.8 72.3 73.6
Random forests 75.8 69.6 73.1

C4.5 71.7 71.6 71.3

uninterruptible: 210). Since the data were not significantly imbal-
anced, we did not apply under-sampling[3].

After giving the whole data to the three classification learning
algorithms as the training data, the data were evaluated by using
10-fold cross validation. The experimental results on the accuracy
of the three classification learning algorithms are shown in Table 2,
where the “TP rate” means the rate of correctly classified data and
the accuracy for the two tasks and the whole task is described.

From the figure, we find that the SVM outperforms other two
CL algorithms in the typing task, the mouse operation task, and
the whole task. Thus, SVM should be applied to this work.

5. Discussion
5.1 Evaluation of Estimating Interruptibility with

Tabletop Pressure
The experimental results show our method’s estimation of user

interruptibility has about 77% accuracy for the typing task and
about 72% for the mouse operation. We consider our main tar-
get to be the typing task because editing documents is the main
desk work at an office. We consider this level of accuracy (about
77%) for the typing task to be sufficient as a first trial of using
tabletop pressure and that it shows our approach to be promising.
Furthermore, we can combine our method with conventional meth-
ods with other sensors.

As seen in Table 2, the accuracy of the mouse operation task is
less than that of the typing task. In contrast with the keyboard’s
feet pressure, the mouse pressure might be hard to sense with the
LL-sensor and might slightly change during the mouse operation.
We have significant problems to overcome to improve the accuracy
in the mouse operation.

5.2 Estimation of the State of a User Not Typing
Our method can estimate the user’s state only when the user

is typing on a keyboard on a desktop because a pressure sensor
cannot sense any change in pressure when the user is not typing.
Thus, in the experimental evaluation, we assumed that a user could
be interrupted when s/he was not typing.

However, this assumption is not always valid in real environ-
ments. For example, a user might be thinking, reading web pages,
and watching a movie on the display when they are not typing, and
they would not want to be interrupted in such situations. To cope

3



The 1st Annual Conference of the Japanese Society for Artificial Intelligence, 1987

Table 3: Accuracy of feature selection.

TP Rate [%]
Selected features Typing Mouse op. Whole

Keyboard pressure 74.7 – –
Mouse pressure – 64.3 –

Keyboard + mouse 75.8 70.0 69.8
All 76.8 72.3 73.6

with this problem, we plan to extend the current features to cover
no-typing situations. We will introduce additional features includ-
ing sensing the pressure of a mug and the shape and area occupied
by arms resting on a desktop, which the pressure sensor can sense.
We consider these additional features to be promising because a
user does not pick up a mug frequently and does not change the
position of his/her arm much when concentrating on something.

5.3 Feature Selection for Practical Applications
Although we verified that our approach of estimating user’s in-

terruptibility by measuring tabletop pressure is promising, the LL-
sensor with a lattice of small pressure sensors is unique and expen-
sive, and this makes our method difficult to be applied to practical
applications in a real environment. We consider a way to solve this
problem is to use small and inexpensive pressure sensors. There
are various such pressure sensors which can be easily attached to
three feet of a keyboard and the bottom of a mouse. Thus, if a
user’s interruptibility can be estimated only with inexpensive sen-
sors as accurately as with all the pressure sensors of a LL-sensor,
our approach will be quite more practical.

Such pressure sensors can be simulated by detecting the data
corresponding with the keyboard feet regions and the mouse re-
gion from all the data obtained from the LL-sensor. The results on
accuracy are shown in Figure 3. As seen in the table, in the typing
and the mouse operation tasks, the accuracy of only the keyboard
pressure (+ a mouse pressure) is almost equal to that of all the
sensors (LL-sensor). Thus, our approach can be made more prac-
tical by using small and inexpensive sensors. Meanwhile, there are
significant difference in a whole tasks.

6. CONCLUSION
We developed a novel method for estimating a user’s interrupt-

ibility by using tabletop pressure. We conducted experiments with
participants in two typical tabletop tasks to show that our method
could estimate when a user was too busy to receive typical mes-
sages. As a result, we confirmed our method could estimate the
interruption. Then we discussed the accuracy of our method and a
way to make our method more practical.

In the future, we will use richer features taken from real ex-
perimental environments. This will help to increase accuracy and
make it possible to estimate activity states of users when they are
not using the keyboard. For that purpose, we will try to determine
the optimal number of the features. In addition, we will assess the
utility of cost-sensitive learning.
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