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Abstract: For natural human-agent interaction, the recognition of important gestures to facilitate
communication is necessary. Recent advances in technology have made it possible to use the human
body as a means for this interaction. In this paper, we combine techniques to create a process
flow which can discover and extract a body gesture, create a low-dimensional model, and then use
it to recognize body gestures provided in real-time. We show that this technique can be applied
to a virtual basketball game, an environment which is highly dynamic and where the variation of
gestures is high but the number of training samples is low. We demonstrate this technique to the
extraction and recognition of a passing gesture.

1 Introduction

Interactions between humans and virtual agents can
be achieved through a number of modalities. The
most common modality is arguably mouse and key-
board, which can be seen in agent interactions during
video games. However, recently there has been an in-
crease in the range of interaction modalities, includ-
ing commercial applications. These modalities focus
on mapping the physical world movements of the hu-
man into the virtual world, where it is acted upon by
agents.

Of course, there needs to be a streamlined pro-
cess for supervised or unsupervised learning of ges-
tures and their recognition. One constraint is that
we should not predefine the gestures. Especially in
systems with a high manipulative/symbolic gesture
ratio, there is no way to accurately define every pos-
sible type of gesture. Due to this, we include an extra
step in the process of the learning of gestures, which
is that of gesture discovery.

If we assume that the gestures should not be pre-
defined, then the only way to gather information on
gestures is to have users perform them. Of course, this
means that gestures should be able to be discovered in
the time series data. For example, if we know that a
throwing action is contained in some time-series data,
we must have some means of both finding this infor-
mation and extracting it so that useful samples can
be gained. There are a number of existing measures
for discovering gestures or motifs, such as [16] and [8].
In this paper, we make use of these algorithms so that
appropriate gestures may be extracted.

Following on from the condition of undefined ges-
tures, we take the constraints further and argue that
gestures should also be natural in their form. Com-
pare two situations, one in which a user is told to per-
form gestures in isolation and one in which the user
performs gestures in the context of a task. We argue
that the latter situation is more preferable for gener-

ating samples, due to the contextual environment and
also the amount of variation which can be displayed.
In this case, the naturalness is higher in the latter
task.

The contribution of this paper is a process flow,
beginning from a time series of raw multi-dimensional
data and ending with a set of gestures which can be
recognized robustly. We introduce several constraints
on the system during this process:

• Training samples must be extracted from time
series data - nothing is known about the initial
location of the gestures inside the time series

• The form of the gestures are varied

• The number of training samples is relatively low

• Gesture must be recognized as they occur, as
opposed to when they end

While the techniques used are not unique to our
system (apart from the recognition algorithm), the
combination of them as an entire process is novel. We
introduce this process flow so that other systems with
similar constraints may be constructed in a straight-
forward manner.

Section 2 describes the virtual environment, that
of virtual basketball. Section 3 discusses how ges-
tures should be recognized in the environment, and
the specific task environment is to be further clarified
in Section 4. The actual framework is given in Section
5 followed by future work and the conclusion of the
paper.

2 Virtual Basketball

The setting which will be used for the implementa-
tion of gesture extraction and recognition is a vir-
tual basketball game. Essentially, the goal is to pro-
duce a game which functions as real basketball in
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terms of body movements. No peripherals such as
keyboard or mouse should be used, and tracking of
the body is done using a Kinect camera. A more de-
tailed overview of the system is described in [10]. Ad-
ditionally, because the user should be able to navigate
throughout the environment, a pressure pad sensor is
used to detect the user walking and their direction.
The algorithm for this is based on that in [11], and
will not be described in detail here.

Virtual basketball is an ideal platform for gesture
recognition due to the large number of gestures that
are used. While some are obvious, such as shooting
and passing, others can have a variety of meanings.
These meanings may be explicit, such as calling or
looking for a pass. On the other hand, they can be
more abstract, such as a simple pointing gesture. Of
course, contextual meaning and recognition are inter-
twined and support each other and this fact should
not be lost in future prototypes. The next section
will also differentiate between differing types of move-
ments and choose those which are suitable for this
work.

In the virtual world, the dynamism of virtual bas-
ketball becomes an issue as we would ideally like to
recognize variations of a gesture, even if the move-
ments differ greatly. For environments in which fast-
paced action occurs, these variations will increase as
the user focus is not so much on producing a ‘cor-
rect’ movement, but one which does a ‘good enough’
job. Taking into account the complexities involved in
gestures such as passing and shooting, gesture recog-
nition in basketball is not a trivial task.

3 Interaction Recognition

There are several issues to consider before deciding
on the method of gesture extraction and recognition.
Firstly, the type of gestures to be recognized should be
decided upon. Also, established techniques should be
analyzed so that an appropriate one can be adapted
to virtual basketball. We discuss these issues below.

3.1 Gestures to be recognized

One issue in the field of interaction is the recognition
of gestures which are important to the task. In the
case of basketball, the obvious body gestures which
should be recognized are physical actions such as drib-
bling, passing and shooting. On the other hand, there
are other types of movements which are more anal-
ogous to signals towards other actors in the virtual
space. We differentiate between these two types of
body movements: object-manipulation acts and com-
municative acts. The latter category is what is tra-
ditionally thought of as being gesture, in particular
what Ekman and Friesen describe as regulators [6].

We only consider the former category, as this is
necessary for the implementation of playing basket-
ball using the body. Without dribbling, passing and
shooting, the game becomes meaningless. In partic-
ular, we use the passing movement as an example in

the rest of the paper. Communicative acts are, as
the name suggests, used for communicative purposes.
While they enhance the system and facilitate human-
agent communication, they are not strictly necessary
for a representation of basketball.

There is another powerful argument for only con-
sidering object-manipulation movements for recogni-
tion. When observing real-life communication be-
tween humans, various non-verbal interactions take
place. However, these interactions are not standard-
ized in any way. For example, when requesting a pass
from a team-mate in basketball, there is not one par-
ticular symbolic action which encapsulates this. The
actions are dependent on the player.

The actual range of communicative acts which will
be employed by the user is unknown, while object-
manipulation acts can be predicted. Additionally,
common features of object-manipulation acts can be
identified while communicative acts may have no com-
mon features. Above all, by recognizing passing, drib-
bling and shooting, a basic version of virtual basket-
ball can be implemented. In fact, the recognition of
these actions are necessary for the development of fur-
ther prototypes. Communicative acts can be seen as
the next level of implementation.

3.2 Recognition requirements and
techniques

The recognition of gestures is a wide area of research,
the details of which won’t be explained in this paper.
In order to decide on the best recognition technique,
some requirements must be defined and adhered to,
taking the above discussions into account.

We refer to the previously stated constraints on
the system given in Section 1. From these, we ob-
tain requirements for selecting an appropriate gesture
recognition technique. We can take the following con-
straints:

• The form of the gestures are varied

• The number of training samples is relatively low

• Gesture must be recognized as they occur, as
opposed to when they end

which we describe as generalization, training sam-
ple size, and temporal progression respectively.

Next, we compare some existing techniques for
recognition and see how they handle these require-
ments. We focus on three techniques: state machines,
hidden Markov models (HMMs) and Gaussian Mix-
ture Regression (GMR). It will be shown that the lat-
ter of these techniques is ideal for our task.

In general, state machines enable us to define any
gesture as long as we can specify the position of the
user for each separate state. It is also possible to
include time constraints inside each state. This tech-
nique is useful for simple symbolic gestures which are
well defined. The FUBI framework is a typical exam-
ple of a state machine system which is fairly robust



Table 1: Comparison of gesture recognition techniques according to constraints

Method Generalization Training sample size Temporal progression
State machine Possible but difficult None - gestures predefined Easily implemented

HMM Robust depending on model Many needed for complex gestures Possible but non-trivial
GMR Can generalize in feature space Few required for model Easily implemented

and can recognize a range of gestures such as crouch-
ing and swiping [9]. It is also trivial to include tem-
poral information for object manipulation. Complex
gestures with a wide range of implementations, such
as passing, can feasibly be recognized in state ma-
chine systems. However, the variations of gesture for
a new user cannot be predicted and so generalization
is difficult.

HMMs are a well known probabilistic model used
in the field of gesture recognition. While they have
been proven to be very powerful, one drawback is
that they require a number of training samples to be
effective. Naturally, the amount of samples needed in-
creases with the number of dimensions and Gaussians
used. In the case of a passing gesture using Kinect,
we use three vectors for each arm with 3-dimensional
coordinates for each, giving a total of 18 dimensions.
Even without specifying a number of Gaussians to
use, this model already requires a fairly large number
of training samples. Additionally, time progressions
in HMMs are not a trivial task, although solutions do
exist [2].

The final method, and the one which we propose to
implement is Gaussian Mixture Regression. We take
an approach similar to the one described in [4], where
a robot learned the gesture given to it by a human,
with a comparatively small number of training sam-
ples. In order to implement this technique effectively,
dimension reduction is performed through principal
component analysis (PCA), which includes the time
components. Gaussians are then applied to the fea-
ture space in a representation of the general trajectory
of the motion. For robustness, the same gesture can
be repeated, though a large number of repetitions is
not required (only 4-7 were used in the work). The
end result is a mean trajectory over time which can
be used for gesture comparison. In the original work,
this technique was used to also generate gesture for a
robot, but this step is omitted here.

This method allows for real-time analysis of ges-
ture. All that is required is that the streamed data be
reduced to that gesture’s feature space and compared
with the trajectory of the model. We have seen that
few training samples are needed for this approach.
Generalization is made possible as the model accounts
for variation in the training samples. Time progres-
sion of a gesture may also be calculated, as time points
are embedded in the model and can be referred to
as fixed points where object manipulation occurs, or
subjected to the detection of change points.

From the above discussions, GMR appears to be
suitable for this task and it is proposed that it will
be used in the real-time recognition of gestures in the

basketball game. Table 1 summarizes this discussion
on the comparison of techniques.

4 The Model Training Environ-
ment

While it would be ideal to learn gestures during the
playing of the game, there is no way to do this given
that we have no prior information about the displayed
gestures. The alternative approach is to set up a
training environment where a gesture can be used.
The advantage is that this training environment is a
subversion of the real game, so that the context of the
gestures can be preserved. It does not make sense to
inform the user to do a passing gesture multiple times
in front of a screen. Their behavior inside and out-
side the environment may differ. For this purpose, we
created different training environments for the user so
that they could execute gestures within the basketball
context. Screen shots of each of these environments
can be seen in Figure 1.

Naturally, the environment requires feedback. In
particular, if the user is passing or shooting in the
virtual environment, they will expect their actions to
produce a movement of the ball. While it is impossible
for the system to determine this in the training phase,
there is another method, the Wizard-of-Oz (WoZ),
which has been widely implemented in agent research
[18][3]. In this environment, the determination of the
ball being thrown is made by a hidden human user.
This hidden user is able to see both the target user and
the environment so that when an appropriate gesture
is made, the correct feedback can be given to the user
(in this case a ball movement).

Next we describe three training environments that
can be used for extracting one or more gestures. The
objective is to force the user to use a gesture in the
experiment several times. The first is the dribbling
action, which is simply the user bouncing the ball on
the ground with one hand. In basketball, dribbling
occurs with navigation, so we create a navigation sce-
nario where the user is simply instructed to virtually
dribble the ball while using the pressure pad sensor to
make their way around defined locations in the court.

In the shooting scenario, the objective is similar.
In this case, once the user has made it to the target
location, they must then shoot the ball towards the
goal. Shooting without being at the target location is
not permitted. Because there needs to be an objective
for the user, the session will be completed once 10
successful goals have been scored.



Figure 1: Screen shots of the virtual training environments to be used to gather gesture data. From left to
right: dribbling, shooting and passing

Figure 2: Process of gesture discovery and extraction. User behavior is captured and transformed to a time
series PCA. Algorithms to find the change points are implemented, and these locations are used as the basis to
discover the common motifs or gestures which the user executed.

Passing is arguably the most complex of the train-
ing sessions. In this scenario, the user and two agent
teammates are competing against one agent oppo-
nent. The objective is to successfully pass the ball
between the team of the user and two agents, while
the opponent agent attempts to block the pass of the
ball by standing in the way. The user and teammates
are stationary, only rotating their body to pass, while
the opponent agent may move. This was done to pro-
mote faster and more spontaneous behavior. The ses-
sion ends once 20 consecutive passes have been made.

The final output of each training session is raw
time-series data of the user’s actions inside the envi-
ronment. As long as the sessions contain some ges-
ture, it is sufficient. There is no need for the data to
be modified, as the process of gesture extraction will
occur in the next step.

5 Process of Recognizing a Pass

In this section, we provide the details of the final sys-
tem in the identification of passing by a user. The
first is the extraction of the gesture in its raw form
from the training environment. While this process is
used for recognizing a pass, any gesture can undergo
the same steps. A novel recognition algorithm is also
provided.

5.1 Gathering of raw data

The user undergoes the training phase in the virtual
environment and we record the motion capture data
for the entire session from Kinect. In this case, the
data is represented in the form of vectors, namely the
bones connecting the shoulder, elbow and wrist. This
data is then kept in its raw form. Essentially, we now
have M time series points consisting of D dimensions.
In the case of six vectors (three for each arm), the
three-dimensional coordinates total to 18 dimensions.



Figure 3: Construction of the gesture model using GMR. The input of data is the set of all points used in the
gesture, reduced to two dimensions by PCA. After temporal alignment of the data, a regression curve can then
be constructed

5.2 Gesture discovery

We must now attempt to identify the passing gestures
contained within this raw time series data. Further-
more, there is no prior information of the data struc-
ture which represents a pass. To resolve this issue,
an unsupervised learning technique must be used to
discover these gestures. Previous work by Moham-
mad [12] showed that a robot could be made to learn
human gestures with no previous knowledge, simply
by watching them. We use this work as a basis for
gesture discovery. The work in [14] also gives encour-
agement that gestures can be extracted from training
data and this section is based on much of its findings.
A summary of the steps involved is provided in Figure
2.

The first step is to discover where in the data
stream a change occurs, so that there is evidence of
a gesture occurring which is differentiable from other
behavior. This is commonly called the change point
discovery (CPD) problem. To reduce dimensionality
to just one dimension, a special type of time series
PCA is applied using the function in [15]. Once this
has been done, CPD can be performed on the one-
dimensional data.

Two main algorithms used to address this are Sin-
gular Spectrum Transform (SST) [7] and Robust SST
[13], an update of the algorithm which is more resis-
tant to noise. The output of this is a set of change
scores which can be used to find change points, which
are identified using Granger causality. In our passing
example, there should be a change point (represented
by a time point t) at every instance of a pass from the
user.

Once change points have been isolated, the final
step is to find the specific motifs which correspond
to the passing gestures. There are several useful al-
gorithms for this task including the Distance-Graph
Constrained Motif Discovery algorithm [12], MK [17]
and MK+ [14]. The output is a series of motifs, rep-
resented by Bstart, Bend, which are the start and end
time points of the discovered gestures. We are able to
then go back to the original data and only consider
the points contained in all common motifs. we con-
sider N D + 1-dimensional points from G gestures,
with the total number of points T in each individual

gesture g also being considered.
This process is independent of D, meaning that

it is useful for a low number of discovered gestures.
The motifs themselves must be verified so that they
actually correspond to the target gesture. This can
be achieved by recovering the raw data stream and
analyzing each motif. Additionally, the nature of the
training session means that there are likely few ges-
tures which can be misidentified as passing. The prob-
ability that a discovered motif corresponds to a pass
is high.

5.3 Model creation

Model creation is achieved through the GMR algo-
rithm described above. We now give further details
on this process, referring to work by Calinon in [4].

The first step is to transform all N points in the
G extracted gestures to the feature space via PCA.
Each associated time point t is also incorporated into
the model, giving an N by D+ 1 input matrix. With
the resulting feature space model, the first C prin-
cipal components sufficient enough for a model can
be used, though in many cases, C = 2. The C by
D + 1 transformation matrix A as well as the associ-
ated PCA column means are also kept, as they will
be used during the recognition stage.

At this point, we now have a set of N gesture-
related points in C dimensions which have been trans-
formed by PCA. Each of these points is associated
with a gesture g at a specific time point t. Note
that the total number of gesture samples G can be
relatively low. We also temporally align each g so
that they are of a fixed length. This is achieved using
the warp path found through dynamic time warping
(DTW). The objective now is to create a trajectory
that model all these points for use in recognition. This
is where GMR becomes useful.

Firstly, a Gaussian Mixture Model (GMM) is con-
structed using K Gaussians through an expectation-
maximization (EM) algorithm to produce a maximum
likelihood estimation. This provides an iterative esti-
mate of the prior π, mean µ and covariance Σ. That



is:

p(k) = µ(k)

p(n|k) = N (n, µk,Σk)

Another approach given is to use Bernoulli Mix-
ture Modeling (BMM), with the parameters reflecting
the prototype:

p(k) = µ(k)

p(n|k) = Bern(n, p(k))

The selection of K can be based on some model
selection criterion, or through direct visual analysis
of the best for of the data. Once the mixture model
is formulated, GMR is used to discover a regression
model with associated variances to be used for com-
parison. Each component k is represented by a mean
and covariance matrix through separating the tempo-
ral nt, and spatial ns values. The expected spatial
value n̂s,k and estimated covariance Σ̂s,k, conditioned
on t for every k Gaussian is derived. Responsibili-
ties of each Gaussian k for each time step are given
through:

βk =
p(nt|k)∑K
k=1 p(nt|k)

Putting this together, the end result is a regression
model where the conditional expectation and covari-
ance of the spatial values at each time value t can be
found:

n̂s =

K∑
k=1

βkn̂s,k

Σns =

K∑
k=1

β2
kΣ̂s,k

By integrating time into the model, we can retain a
mean trajectory and variance for a particular gesture,
which takes into account differing gesture styles. Each
t will have an associated value. Figure 3 provides
a visual summary of this process. This model was
formed from a total of six samples taken from two
people.

5.4 Online recognition

Given the PCA transformation matrix A and a
mean trajectory model, real-time recognition of a ges-
ture should now be feasible. Suppose that in real-time
we have a stream of data consisting of T time points
and D dimensions. Firstly, the data is transformed to
the feature space through subtraction of the column
means and then multiplication with A, which now as-
sociates each individual time point t with a point x′, y′

in feature space (or x′t, y
′
t).

Our first step in recognition is to determine what
we want to recognize. From the collected samples,

Figure 4: A passing trajectory model with two sub-
trajectories. The dark and light areas indicate the
setup and release sub-trajectory states respectively

we identified three states: setup, release and post-
pass. Of these, we are only interested in the first
two. Our trajectory model allows us to visualize these
states and we split these into sub-trajectories which
we then use for the purposes of recognition. Each sub-
trajectory model is represented by all GMR points
between a start point s and end point e, where s >= 0,
e <= T and s < e. We define a point in the sub-
trajectory model as mxt,myt, where s <= t <= e.

Given two sub-trajectory models (setup and re-
lease), our goal is to recognize if the model corre-
sponds to either of them. Firstly, we extract the
most recent e− s data points and determine the Ma-
halanobis distance between x′0, y

′
0 in the data stream

and mxs,mys in the sub-trajectory model. If this is
satisfied, we then use DTW to calculate the distance
between all points in the data stream and the sub-
trajectory model. It is possible that more than one
sub-trajectory model is inside the distance threshold.
In this case, we classify the gesture with the smallest
amount of distance according to DTW.

A visual representation of the two sub trajectories
is given in Figure 4, while pseudocode for algorithm
recognition is provided in Algorithm 1.

5.5 Preliminary evaluation

We conducted a preliminary evaluation of the recog-
nition system. For this, we observed users utilizing
the system and using gestures to pass the ball. The
two users from whom training samples were gathered
achieved a recognition rate of approximately 80%. Two
untrained users also participated and achieved a lower
recognition rate of approximately 65%. It should be
noted that the untrained users were given no instruc-
tion on how to perform a pass. At first, executing a
pass was unsuccessful, however this improved over a
time as they tested the best method with which to
throw a pass. We believe that this result indicates
that the training time needed to perform the gesture
correctly is fairly low.



Algorithm 1 Algorithm to recognize gestures in GMR model

{load whole model}
GMR← entire model found through GMR

{define sub-trajectories through start and end points in GMR}
Setup← GMRModel(25, 30)
Release← GMRModel(35, 45)
Gestures← add(Setup, Release)

{online data collection}
data← Kinect data stream
threshold← 5

{find all gestures where the start point is close to start point of the data}
candidates← empty set
for all g in Gestures do

if distance(g(x0, y0), data(x0, y0)) < threshold then
add to candidates

end if
end for

{check all candidates - choose the one with minimum DTW distance}
for all c in candidates do
DTWV alue← DTW Distance(data, sub-trajectory)
if lowest DTW value then
c is recognized gesture

end if
end for

Additionally, contextual information was included
as a means to classify the gesture. We found there
were edge cases between the setup and release phases,
which would produce false positives in certain poses.
These poses could be identified during the game and
were dealt with so they produced no feedback.

6 Issues and Future Work

We have described the implementation of a procedure
to extract natural gestures from users in the virtual
environment and then using them to form a model,
based on a limited number of training samples. There
are some issues which must be considered.

User behavior can be affected by their cognitive
load. In the environment, there are two major sen-
sors - the Kinect body recognition system and the
pressure sensor used for navigation. If a user’s atten-
tion is driven towards manipulating these sensors, the
naturalness of their behavior could be affected along
with the gestures they produce. We have tried to
curb this effect by using non-wearable sensors to al-
low freedom of movement as well as preserving a user’s
natural motion.

In this work, we can easily determine the appro-
priate sub-trajectories through GMR model visualiza-
tion. However, there may be instances where this is
not so apparent. In this case, we can only speculate
about what are ideal start and end points of the tra-
jectories. There are several other parameters which

must be tweaked in order to produce a robust sys-
tem, including the threshold distance for comparison
of GMR points. In our preliminary evaluation, we
found edge cases which discriminated towards the re-
lease sub-trajectory. While the poses causing these
edge cases could be identified with passing, we antic-
ipate this will become more complex with the recog-
nition of shooting gestures.

Our future work involves analyzing communica-
tive gestures using the same process. By doing this,
we hope that there are some underlying features as-
sociated with a communicative act, regardless of the
gesture performed. As an example, the features of a
gesture executed by users to request a pass might be
smooth arm movements with a large spatial range.
Although the actual gestures may differ considerably,
the model should be able to capture these features
and apply it to any movements of that type.

Additionally, contextual information should also
be considered, particularly in the case of gestures with
no fixed meaning. In this work, we only consider ma-
nipulation tasks because the context of the action is
fairly constrained. Therefore, only using body move-
ments as dimensions is sufficient. On the other hand,
communicative acts require some agent knowledge of
the context of the situation. If a user makes a move-
ment directed at the ball handler with nobody mark-
ing them, it is likely that they are requesting the ball.
Contextual knowledge such as this potentially allows
agents to exhibit some form of higher level reasoning.



7 Conclusion

This work has proposed a process of extracting nat-
ural gesture in a virtual basketball environment and
then using these to produce a gesture model which
can be used for real-time recognition. The recognition
system requires relatively few training samples and is
independent of the number of dimensions, making it
ideal for situations where samples are not plentiful.
The environment is unique in that it is a dynamic
game, with an assumption that gestures will vary both
according to the user. We are currently implementing
this technique with ball-manipulation tasks to set the
foundation for a playable game. If this is successful,
the next step is to use the same process to discover
features of communication from the user towards in-
telligent agents. If these features can be identified by
the agents, there is potential to create powerful agents
which can infer the meaning of a gesture from both
its execution and context.
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