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Abstract: Enhancing the safety of drivers is one of important issues in a driving assistant system (DAS). 

In order to solve this issue, the situation information of a vehicle should be recognized. In this paper, we 

present Discrete Hidden Markov models (DHMMs) to classify five driving patterns which are essential 

features for recognizing the situation information of vehicles. A virtual vehicle simulator was developed 

to collect the raw data of the driving operation, and each DHMM was learned from the obtained training 

data. The structures of the DHMMs were experimentally selected using a cross-validation process with 

the results showing 89.8% classification accuracy.   

 

1 Introduction 

Since the advent of intelligent vehicles, enhancing the 

safety of the driver is one of the important issues 

pertaining to a driving assistant system (DAS). The 

purpose of a DAS is to prevent drivers from encountering 

dangerous situations by controlling their vehicles or 

notifying them of the current vehicle information by 

means of warning alarms. There have been many types of 

DASs developed, such as the FRMS (front rear 

monitoring system), LDWS (lane departure warning 

system), LKAS (lane keeping assist system), SOWS 

(side obstacle warning system), and LCDAS (lane 

change decision aid system), etc. Although they have 

many advantages when used to detect dangerous 

situations and to control a vehicle actively when a driver 

cannot recognize dangers in advance, they still have 

several limitations as discussed below. 

First, these systems do not detect the current situations 

of a vehicle and driver, such as urgent, distraction, 

abnormal and dangerous situations, as inaccurate 

information pertaining to the detected situation can 

confuse drivers and because the detection process is 

complicated. Second, without the situation information, 

the aforementioned methods cannot determine the 

priority of information to be delivered to the driver. 

Nevertheless, classifying the situation of the vehicle 

using the raw data of the vehicle (e.g., the steering angle, 

speed, yaw rate, and brake pedal information) is 

important to improve the safety and performance in a 

wide range of applications. For example, LDWS detects 

the lane using vision data mainly in order to warn the 

drivers of dangerous behavior by a vehicle, but this 

method is not foolproof in bad weather. With the ability 

to recognize the current situation, vehicles can warn the 

driver by referring to the situation information regardless 

of a lane departure. From the viewpoint of HVI 

(Hunam-Vehicle Interaction), situation information can 

help a vehicle to distinguish the necessary information 

from all information in the current environment so that a 

driver can recognize essential information efficiently. 

The vehicle situation can be recognized by converging 

driving patterns, the driver, and the surrounding 

information. Driving patterns are composed of many 

actions, such as cornering, lane changes, following, 

overtaking, stopping, and speeding, among others. In the 

case of lane-change, there is a research finding the lane 

change maneuvers of a probe vehicle itself using 

Differential Global Positioning System (DGPS) data and 

multiple probe vehicle trajectories[1], and there is a 

research to estimate time-varying lane-changing fractions 

and queue lengths using stochastic system modeling[2]. 
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In the case of car-following, there is a research for 

evaluating a car-following model and comparing the 

behavior predicted by the GM models with the behavior 

observed under the real world situation[3], and there is a 

research proposed driver-behavior modeling to anticipate 

car-following behavior in terms of pedal control 

operations in response to the observable driving signals, 

such as the own vehicle velocity and the following 

distance to the leading vehicle[4]. In the case of left or 

right turning, there is a research applied to unusual 

right-turn driving behavior prediction at an intersection 

with an experiment on a driving simulator[5]. Vehicle 

situations are a more superordinate concept than driving 

patterns.  

In this paper, we classify the driving patterns of lane 

changes and cornering, which can be used to recognize 

vehicle situations. In order to classify these driving 

patterns, an approach involving a discrete hidden Markov 

model (DHMM) is applied. The HMM, a supervised 

learning algorithm, has become increasingly popular in 

the last many years. and HMM representing sequences of 

states that have structure in time, such as speech 

recognition[6, 7], handwriting[8], hand gestures, And 

also hidden Markov models is a effectiveness processing 

to describe distributions over meaningful state sequences 

with the models using vehicle signals[9]. The method has 

two strong advantages in this study. First, DHMMs are 

very rich in terms of their mathematical structure and 

hence can form a theoretical basis for use in a wide range 

of applications. Second, the models, when applied 

properly, work very well in practice. The DHMM 

procedure is discussed in Chapter 2. 

There are similar studies regarding the enhancing of 

safety issues in DAS. Kannan et al. proposed the 

intelligent driver assistance system (I-DAS)[10] for 

safety warning messages during time-critical situations 

using an ontology approach. In addition, Jin[11] 

proposed a novel safety lane change model to reduce 

traffic accidents during conscious lane changes by 

vehicles on highways under dangerous conditions. These 

examples rely on different approaches to solve safety 

issues in DAS, but they do not consider the situation 

information deeply. Moreover, the number of driving 

patterns is limited. 

 

2 System Architecture 

2.1 Virtual Vehicle Simulator Environmental 

In order to collect raw data pertaining to a vehicle, in 

this case the steering angle, speed, yaw rate, gas pedal 

information, brake pedal information and the 

three-dimensional position with a sampling time of 

100ms, a virtual vehicle simulator is developed. This 

virtual vehicle simulator was designed with one monitor 

as a display and a Logitech force-feedback wheel 

joystick with two state pedals (one for acceleration and 

the other as a brake), as depicted in Figure 1. The input 

devices for steering and the pedals are tuned to simulate 

a real vehicle as much as possible. This virtual vehicle 

simulator uses a three-dimensional driving environment, 

as depicted in Figure 2, which satisfies the verification 

of driving patterns such as lane changes, cornering, 

overtaking and, intersection patterns. Several barriers are 

placed on the track randomly for lane changes and 

stopping patterns.  

 

2.2 Supervised Learning Algorithm. 

Driving patterns are composed of many actions, such 

as cornering, lane changes, following, overtaking, 

stopping, and speeding, etc. This research classifies the 

driving patterns of lane changes and cornering because 

these patterns occur more frequently than other patterns 

when driving. Furthermore, they are considerably related 

to dangerous situations.  

In this study, five driving patterns, as shown in Table 1, 

are classified by a supervised learning method. As 

depicted in Figure 3, the learning process is composed of 

two phases. The first phase involves vector quantization 

for discretizing continuous input data, and the second 

phase involves the learning of the DHMMs, each of 

which denotes each driving pattern separately.  

 

Figure 1. Experiments environment 3-Dim. Driving 

simulator and Logitech wheel joystic with 2 state pedals 

 



 

Figure 2. The virtual vehicle simulator 

 

TABLE 1. Five driving patterns 

Driving 

Patterns 

Left  Neutral Right  

Lane change 

Cornering 
Neutral 

Lane change, 

Cornering 

 

 
Figure 3. Supervised learning overall diagram 

3 Experiments and Results  

3.1 Data Acquisition 

The first experiment was done for the purpose of 

evaluating the characteristics of normal driving patterns 

and to formulate a training data set. Subjects were 10 

normal people aged 20~30 years (males, licensed). The 

data acquired from the first experiment were from a total 

of 50sets of five driving patterns. Subjects conducted five 

trials each. The experimental procedure is described 

below. 

 Step 1: Brief explanation of the experiments and 

the virtual vehicle simulator 

 Step 2: Give some time to become familiar with 

the track 

 Step 3: Circuit driving for data acquisition (CW 

and CCW, respectively) 

 Step 4: Repeat Step 1 through Step 3 five times 

The second experiment sought to gain a variety of 

training data. All subjects drove on an identical track with 

constraints that diversified the driving patterns. The data 

acquired from the second experiments were used to 

formulate 50 sets of five driving patterns. The procedure 

and constraints of the second experiment are described 

below.  

 Constraints: Each subject should avoid barriers 

and remain in his lane for a limited time (one 

minute per circuit driving). 

 Step 1: A brief explanation of the constraints 

 Step 2: Give some time to for the prepare 

experiment  

 Step 3: Circuit driving for data acquisition (CW 

and CCW, respectively) 

 Step 4: Repeat Step 1 through Step 3 five times. 

3.2 Vector Quantization. 

The first phase of the learning process is vector 

quantization. This is necessary for mapping two 

continuous sets of raw data into a discrete value suitable 

for input into a DHMM[12]. Seven-level threshold 

values are used, as shown in table 2. The vector 

ACCELERATION PEDAL

SIGNAL

STEERING ANGLE SIGNAL

VECTORQUANTIZATION PROCESS

DISCRETE SEQUENCE

11,33,2 3,2, 32,  …

DHMMs

DISCRETEHIDDENMARKOV MODEL

• A vector quantizer is a

system for mapping a

sequence of continuous

or discrete vectors into

a digital sequence

suitable for Learning

A

B



quantization results are depicted in Figure 4. In this 

figure, black cells denote a high frequency of 

occurrences while white cells represent a low frequency 

of occurrences. The figure shows the well-distributed 

characteristics of each pattern 

 

TABLE 2. The threshold for vector quantization 

 

3.3 Baum-Welch Learning Algorithm. 

  The second phase is the learning process, and this uses 

the Baum-Welch algorithm. Each DHMM is learned 

from an observation sequence in the training data 

obtained from the above experiments for each driving 

pattern. In generally, the Baum-Welch algorithm incurs 

an overfitting problem. Therefore, we undertook a 

cross-validation process and evaluated the 

appropriateness of the learned DHMMs according to the 

number of hidden states. As a result, five hidden states 

were selected to avoid the overfitting problem. Figure 5 

shows the cross-validation results with two to eight 

hidden states. Figure 6 presents a confusion matrix of the 

test data as evaluated by the learned DHMMs. The 

accuracy of the classification is 89.8%. 

3.4 Results of Real-Time Classification 

  For a real-time classification of the driving patterns, 

we implemented the five learned DHMMs into a virtual 

vehicle simulator. Time-series data pertaining to the 

steering and acceleration pedal were acquired in real time 

from the virtual vehicle simulator and were stacked up to 

50 sequential datasets with a sampling time of 100ms.       

 
Figure 4. A frequency map of each state 

The input sequence was discretized by a vector- 

quantization process and its similarity with each driving 

pattern was then evaluated using the Viterbi algorithm. 

Finally, the averaged Viterbi distance of each DHMM 

was compared to that of the other models, after which the 

i
th

 DHMM with a minimum distance was selected as the 

current driving pattern: 

 

  Current Driving Pattern =  

                𝑎𝑟𝑔min
𝑖

(Average Viterbi Distance ) 

Figure 7 represents the average Viterbi distance of 

each DHMM model with respect to time. 

 

 

Figure 5. A cross-validation result 

Input Sequance Threshold Level 

Steering angle 

Under -40 degree 

Over -40 degree ~ Under -12 degree 

Over -12 degree ~ Under -5 degree 

Over -5 degree ~ Under 5 degree 

Over 5 degree ~ Under 12 degree 

Over 12 degree ~ Under 40 degree 

Over 40 degree 

Acceleration Pedal 

Under 18 %  

Over 18 % ~ Under 24 % 

Over 24 % ~ Under 29 % 

Over 29 % ~ Under 43 % 

Over 43 % ~ Under 50 % 

Over 50 % ~ Under 60 % 

Over 60 % 



 

Figure 6. The confusion matrix with five hidden States 

 

 

Figure 7. The average Viterbi distance of each DHMM 

 

4 Further Works and Conclusion 

In this paper, five driving patterns were investigated in 

order to recognize situation information, which is useful 

when seeking to enhance driver safety. We applied a 

DHMM method to classify the five driving patterns, 

which resulted in classification rates of 89.8%. The 

training and test data were obtained from a virtual 

vehicle simulator and the learned DHMMs were 

successfully embedded for real-time recognition. In order 

to understand driving situations, following further works 

will be explored. First, a variety of patterns should be 

classified, as these are related to safety and performance 

of a driving assistant system. These can include starting a 

car, using the seat belt, checking the gas gauge, and 

setting the temperature. Second, constructing reaction 

model is necessary to provide proper information to 

drivers for application in the field of Human-Vehicle 

Interaction.  
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