
Manipulation of Virtual Robotic Arm
Using 2D Pointing Device

Masatoshi Sato1 Hidetoshi Nonaka1 Johannes Mikulasch2

Takeshi Yoshikawa1 Masanori Sugimoto1

1 Graduate School of Information Science and Technology, Hokkaido University
2 Technische Universität München

Abstract: In order to operate a multi-joint robotic arm with high degrees of freedom, exclusive
controllers with steep learning curves are often required. We believe it is more intuitive to control
each joint of the robot on a computer screen using a common computer mouse. In comparison to
other input devices, like touch screens or 3D input devices, the mouse can be superior in terms of
precision and accuracy. In this paper, we implement a graphical control program showing a 3DCG
model of a robotic arm. The joints of this model can be moved by click and drag movements of
the mouse. An actual robotic arm is synchronized accordingly to exactly mimic the manipulations
of the virtual model.

1 Introduction

In recent years, three-dimensional computer graphics
(3DCG) changed from a technology only used in spe-
cialized laboratories and companies to a technology
that everyone can use.

Today’s 3DCG applications are used on personal
computers, game consoles, and mobile devices. In
those applications it is often required to manipulate
an object in 3D space. A typical 3D manipulation
task is the free movement of an object in space and
has six degrees of freedom (DOF): three to translate
an object along the x-, y-, and z-axis, and three to
rotate it around those axes.

To accomplish this task, special three-dimensional
input devices with 6 DOF like the SpaceNavigator 3D
Mouse1 have been developed, while the research for
using a standard computer mouse to do so has been
neglected.

In our opinion it is important to research interac-
tion methods to perform 3D tasks with a mouse. The
mouse has been a standard input device for decades.
People are used to it and can perform 2D tasks, like
navigating Graphical User Interfaces (GUI), playing
games or even drawing a picture with low effort and
high precision. Moreover, computer mice are widely
available at an affordable price compared to 3D input
devices.

The handling of a robotic arm is an example appli-
cation where an intuitive interaction method is needed.
Typically, robotic arms are directly operated through
controllers. Those controllers have one slider or joy-
stick for every joint motor to be controlled. Because
robotic arms often consist of five and more joints, it
is difficult to master those controllers. An intuitive
GUI simplifies the controlling.

In this paper, we implement a prototype interac-
tion method for intuitive and precise teleoperation of

1http://www.3dconnexion.jp/

a robotic arm using a mouse. The user controls the
robot through a virtual model on his computer screen.
By clicking and dragging on one of the joints he ad-
justs its angle. The actual robot is connected to the
computer and moves simultaneously. Lastly, we con-
firm the performance of our method and discuss fur-
ther ideas.

2 Related Work

We introduce the former research on the manipulation
of 3DCG by 2D pointing devices. There are several
methods that have been studied to manipulate ob-
jects in 3D space using virtual handles. To rotate an
object, Chen et al. [1] proposed “virtual sphere” and
Shoemake et al. [2] proposed “ARCBALL”. Both use
a superimposed sphere, on which the user can click
and drag to pitch, yaw, and roll the object. To rotate
and translate an object, Conner et al. [3] proposed
“3D Widgets” and Herndon et al. [4] proposed “Vir-
tual Shadow”. However, those methods are not suit-
able to control a robotic arm regarding all degrees-
of-freedom. They only allow to manipulate a single
object, whereas a robotic arm requires many objects,
its joints, to be controlled.

Operation by selecting and controlling the joints
directly is more intuitive than indirect operation by
controllers. Hashimoto et al. [5] proposed that users
manipulate each part of the robot by directly touch-
ing it on a view of the world as seen by a third-person
view camera(TouchMe). It was reported that some
subjects requested a stylus pen for more precise ma-
nipulation. We suggest the mouse is more suitable in
terms of the following points:

• Pursuing precision and accuracy

• Eliminating the disadvantage of covering the screen

tkomat
テキストボックス
II-p10

Figure 1: The axes of the screen

Figure 2: The axes of the virtual object

3 Proposed Interface

In the following, we propose our interface to manip-
ulate a robotic arm. A mouse is used to control a
virtual robotic arm in a GUI program.

In the application the user can perform three tasks:

• Moving the robot’s joints

• Rotating the world

• Zooming in and out

The user moves each joint by clicking on the joint
and dragging with the left mouse button. He ro-
tates the coordinate system by clicking and dragging
somewhere on the screen (but not on the joint) and
moves the viewpoint position by dragging with the
right mouse button.

Figure 1 shows the axes of the screen and the po-
sition of each joint. Figure 2 shows the axes of the
virtual object. The axes of the screen do not change
even if the virtual object is rotated, the axis of the
virtual object always corresponds to the virtual ob-
ject. We name the robotic arm’s joints M1-M5 from
top to bottom.

3.1 Moving the robot’s joints

A joint is selected by clicking, and moved by dragging.
The joints move differently, as shown in Figure 3.

First, we divide the virtual object into joints and
rigid objects. Next, we identify the joint at the posi-
tion where the user clicked on by using z-buffer. The
z-buffer is a memory area storing the depth informa-
tion of the drawn objects. The z-buffer can return the
top-most joint even if multiple joints overlap.

Figure 3: Movement of each joint

Movement of M1 opens and closes the gripper. M1
opens by positive movement along the screen’s x-axis
and closes by negative movement along the x-axis.
M2-M5 rotate by movement along the x-axis. The
purpose of joints M2-M4 is to move the arm up and
down, while M5 rotates the arm around its base. De-
pending on the orientation of the operation, the angle
θn(n = 1, . . . , 5) of each joint is increased or decreased
by the constant angle α (α is a parameter that con-
trols the angle of each joint) regardless of the position
and orientation of the viewpoint.

θn ← θn ± α (1)

However, θn should not move over the joint’s limits.

3.2 Rotating the world

If the user selects an area outside of a joint and drags
the mouse, the world rotates around the x- and y-axis.
It only rotates in two degrees-of-freedom, because ro-
tation around the z-axis is not a natural viewpoint
movement in the real world. The virtual robotic arm’s
x-axis is always oriented along the horizontal direction
and its y-axis along the upward direction.

The negative rotation around the x-axis is achieved
by the positive movement of the screen’s y-axis, while
the positive rotation around the y-axis is achieved by
the positive movement of the screen’s x-axis.

Hereinafter, we explain how to determine the an-
gle. The user drags the mouse from point P to point
Q on the screen. When the mouse cursor is on the
point Q, the corresponding 2D position vector is u =−→
PQ = (ux, uy)

t. The angle θx around the x-axis and
the angle θy around the y-axis are given by Equations
2 and 3. However, we limit θx to (0 < θx < 90) be-
cause we neither want to look under the robot nor
turn the world upside down.

θx ← θx − βuy (2)

θy ← θy + βux (3)

The parameter β controls the angle of the virtual ob-
ject.

The rotation-matrices around the x-axis and y-
axis are Rx, Ry. The state matrix M of the world is
then calculated by Equation 4.

M = RxRyMini (4)

With Mini being the initial state matrix.

3.3 Zooming in and out

We also want to move the viewer towards the robotic
arm and away from it, to create a zooming effect. The
user can zoom the scene by right-clicking the mouse
and drag along the screen’s x-axis.

When the user drags in the positive direction of
the x-axis on the screen, the view matrix’s z-translation
increases. Therefore, the robot model becomes larger.
When the user drags in the negative direction of the x-
axis on the screen, the view matrix’s z-translation de-
creases. Therefore, the robot model becomes smaller.

The amount of change in the z-coordinate is de-
termined by the speed of dragging, so that the user
can zoom in and out faster.

Now we explain how to determine the viewpoint’s
z-coordinate. The user drags from point P to point
Q on the screen. The value of the z-coordinate tz is
then given by Equation 5.

tz ← tz + γux (5)

With γ being a function proportional to ux. In the
result, tz increases when movement of the cursor gets
faster.

The translation-matrix of the z-axis is Tz. The
view matrix is then calculated by Equation 6.

M = TzMini (6)

4 Prototype System

We developed a prototype system in which the user
controls a robotic arm using our proposed interface.
Figure 4 shows a structure chart of our system. Mouse
movements control the Virtual Robotic Model on the
PC, which is connected to the Real Robotic Arm via
an Arduino.

4.1 Robotic Arm

We use ISUPET’s “Gripper Arm Robot 40-320C”1,
as shown in Figure 5. It is a wired remote controlled
robotic arm with five joints and five motors. The
robot has grippers to grab and release something and
is able to lift and lower his arm. We use an Arduino
Uno2 to control the robotic arm, as shown in Figure
6. We equipped the Arduino with five motor drivers
to control the motors of the robot.

1http://www.isupet.co.jp/
2http://www.arduino.cc/

Figure 4: Structure chart

Figure 5: Gripper Arm Robot 40-320C with an exclu-
sive conventional controller

4.2 Application

We developed this application in Microsoft Visual C++
using OpenGL. The environment contains an AMD
Athlon(tm) 64 X2 Dual-Core Processor, 1GB mem-
ory and the Windows 7 operating system.

First, we created a virtual model of the robotic
arm in OpenGL, as shown in Figure 7. The shape
and coloring were modeled the real robot.

The parameters for moving the robot’s joints and
rotating the world are α = 3, β = 1/3, respectively.
The viewpoint’s z-coordinate tz is calculated by Equa-
tion 7.

tz ←

{
tz + ux/20 if |ux| ≤ 10
tz + ux/10 if 10 < |ux| ≤ 30
tz + ux/5 otherwise

(7)

5 Current Status

5.1 Manipulation of the Virtual
Robotic Arm

We confirmed that the three manipulations were suc-
cessfully accomplished using a mouse. The first ma-
nipulation is the manipulation of each joint. The sec-
ond manipulation is the rotation of the coordinate
system. The third manipulation is the scaling of the
object by the movement of the viewpoint position.
The controlling of each joint is not yet intuitive. De-

Figure 6: Motor drivers on an Arduino Uno

Figure 7: Reproduced 3D model

pending on the position of the viewpoint, the joint
moved in a counter-intuitive direction.

5.2 Synchronization with the Real
Robotic Arm

We confirmed the synchronization of the actual and
virtual robotic arms. When a user manipulates each
joint of the virtual model, the corresponding joint of
the actual robotic arm moves accordingly.

However, the precision of the rotation angle and
the movement speed are still improvable.

6 Conclusion

6.1 Summary

We proposed and implemented an interface to manip-
ulate a robotic arm using a 2D pointing device. Fur-
thermore, we proposed and implemented a system to
control the movement of the virtual 3D object and to
synchronize the movement of the actual robotic arm.
The proposed interface is composed of 2D pointing
“click” and “drag” operations. We confirmed that
the three manipulations were accomplished using a
mouse. The first manipulation is the manipulation of
each joint. The second manipulation is the rotation
of the coordinate system. The third manipulation is
the scaling of the object by the movement of the view-
point position.

The user manipulates 3DCG by using only familiar
2D pointing devices. Because the selection of each
joint is applied directly, an intuitive interface could
be accomplished.

Finally, we synchronized our virtual robot model
with a real robot.

6.2 Future Work

There are three challenges for future research.
The first challenge is the realization of a more intu-

itive manipulation. We moved in the opposite direc-
tion of the manipulation depending on the direction
of the viewpoint. In order to achieve more intuitive
operations, transition of the viewpoint should be con-
sidered. We need a natural interface viewed from any
viewpoint.

Furthermore, we want to use Inverse Kinematics
for faster and more intuitive manipulation. By drag-
ging any part of the hand, the other joints rotate ap-
propriately.

The second challenge is to validate the mouse against
other input devices, regarding intuitivity and accu-
racy. For this reason, we have to compare the mouse
with different input devices, like 3D mouse and touch
interface, using reliable test methods.

The third challenge is an improvement of synchro-
nization with the actual robotic arm. First of all, it
is necessary to adjust the movement of the virtual
object, and then sent a signal to the actual object.
Moreover, it is necessary to perform a comparison test
with methods using conventional controllers.

References

[1] Chen, M., Mountford, S. J., and Sellen, A.: A
study in Interactive 3-D Rotation Using 2-D Con-
trol Devices, In Proceedings of Computer Graph-
ics, 22 (4), pp. 121-129 (1988).

[2] Shoemake, K.: ARCBALL: A User Interface for
Specifying Three-Dimensional Orientation Using
a Mouse, In Proceedings of Graphics Interface
’92, pp. 151-156 (1992).

[3] B.D. Conner, S.S. Snibbe, K.P. Herndon, D.C.
Robbins, R.C. Zeleznik, and A. van Dam.:
Threedimensional widgets, In Proceedings of the
1992 symposium on Interactive 3D graphics, pp.
183-188 (1992).

[4] K.P. Herndon, R.C. Zeleznik, D.C. Robbins,
D.B. Conner, S.S. Snibbe, and A. van Dam.: In-
teractive shadows, In Proceedings of the 5th an-
nual ACM symposium on User interface software
and technology, pp. 1-6 (1992).

[5] Hashimoto, S., Ishida, A., Inami, M., Igarashi,
T.: TouchMe: An Augmented Reality Based
Remote Robot Manipulation, The 21st Interna-
tional Conference on Artificial Reality and Telex-
istence, Proceedings of ICAT2011.

