
Behavior Primitives for End-User NPC Behavior Creation

Daniel J. Rea,1 Takeo Igarashi,2 and James E. Young1
1The University of Manitoba, 2The University of Tokyo

Abstract: The creation of interactive character behaviors is a difficult task that is generally relegated to scripting and

programming: techniques not always accessible to game designers who want to author such behaviors. We propose a new

user-centered method for shifting the authoring process away from programming paradigms based on the idea of user-

centered behavior primitives; we show how common interactive behaviors can be described in terms of easy-to-under-

stand primitives such as a goal visibility (hidden, or peeking around a corner) or relative position (stay behind the char-

acter), and that this is sufficient to enable the generation of convincing results.

1 Introduction
Creating quality interactive characters for video games is

a difficult task that requires a large amount of time and

skill. One goal in improving this creation process has been

to develop new tools that reduce the effort required to de-

sign and create quality game content [1], [2], [3]; this

saves time, enables authors to focus more on artistic con-

tent and less on technical details, and makes content crea-

tion more accessible to a broader game developer audi-

ence. In this paper we present a new tool for aiding the

creation of computer-controlled interactive characters.

Creation of story driven games that take place in dy-

namic worlds are particularly challenging due to the di-

verse range of autonomous interactive characters, often

called Non-Player Characters, or NPCs. In addition to

character appearances (3D models, etc.) and animations, it

is often desirable for these characters to have a high level

of believable interactivity with the environment and

player; for example, how a thief character notices an ap-

proaching player and hides, how a guard protects a valua-

ble treasure chest from the player (Figure 1), or the com-

plex interactive combat tactics employed by an enemy at-

tacking the player. It is precisely the creation of these sorts

of interactive character behaviors that we target in our

work.

Researchers have already made great contributions for

end-user authoring of interactive behaviors. Methods have

generally relied on visual programming [5], and scripting

[3], which lower the barrier-to-entry but require people to

define behaviors in a programming-like framing with ex-

act events and conditionals. Others have used program-

ming by demonstration for interactive characters [6], but

have so far only been successful for simple behaviors.

We propose to enable game developers to define behav-

iors using a set of easy-to-understand parameters that we

call behavior primitives. For example, a designer might

tell a thief character to try and stay out of the player’s line

of sight as well as to stay close to, and behind, the player

character. This would result in an NPC that moves closer

while using paths that minimize the NPC’s visibility.

Our approach is to explore the development of a mini-

malistic set of behavior primitives that can encapsulate a

broad range of behaviors, and to explore how these prim-

itives can be used to generate convincing results. In the

long run, we envision creating an interactive sand-box tool

where designers can configure behavior primitives to au-

thor desired behaviors without low level programing, for

example by using demonstration.

2 Related Work
Some researchers simplify game design by providing

high-level programming tools, for example, offering

scripting languages for common complicated tasks, or us-

ing sentences to represent game logic [3]. Others enable

behaviors to be created in a state-machine style structure

by sequentially linking small predefined behavior compo-

nents that are activated by user-defined if-else style trig-

gers [5]. We propose to avoid such programming concepts

which may not be accessible to designers without tech-

nical background.

One common method that avoids programming para-

digms is programming by demonstration, where designers

have been able to author complex 3D models by sketching

simpler 2D representations [1], create convincing static

animations through mouse-based performance demonstra-

tion [2], or even act out a desired interactive behavior style

[6]. Current methods for authoring interactive character

behaviors are only starting to emerge, and are currently

Figure 1: A guard (red) protecting treasure from a thief (blue)

tkomat
テキストボックス
II-p16

limited to simplistic behaviors and do not consider the en-

vironment [6]. We continue in this direction and aim to

enable designers to create complex interactive behaviors

without explicit programming.

Another non-programming approach to creating inter-

active behaviors is multi-agent systems and swarms,

where agent-local goals are set and convincing complex

group behaviors emerge (e.g., see [4]). Our proposed ap-

proach is similar in that we enable designers to configure

parameters from which the desired result emerges, but

with important differences: we focus on an emergent be-

havior for a single entity interacting with an environment

and human-controlled player character, we aim for a small

set of user-centered primitives that match how designers

think about behaviors, and we want to enable the creation

of a broad range of behaviors.

3 Behavior Primitives
We define behavior primitives to be clear, easy-to-under-

stand characteristics of a target behavior that a designer

could configure. For example, a designer could specify

how close an NPC should be to the player, or how hidden

they should be from the player. Behaviors are expressed

by a combination of behavior primitives.

Through iterative and qualitative analyses, we focused

on distilling a range of example behaviors into a minimal

set of behavior primitives. As an example, a “sneak up to

the player” behavior may encompass a thief drawing

closer to the player while staying out of sight; this can be

characterized as a combination of player-character dis-

tance and player-character visibility primitives. We re-

peated this process across 3 behaviors that are common in

story based games; Table 1 shows the example behaviors

and the related primitives we devised. We note that all of

our primitives are spatial in nature, and some inherently

include the environment in their definition (e.g. visibility).

Behavior Primitives

Guard a

point

point of interest (guarded point), rela-

tive position based on point of interest,

distance from player to point of inter-

est, speed of NPC

Sneak up to

player

relative position based on player’s ori-

entation, visibility

Chase player distance from player to NPC, speed of

NPC

Table 1: Behaviors and their distilled behavior primitives

Below we outline how our behavior primitives general-

ize to other behaviors, giving a name to the new behavior,

as well as describing the role the primitives play:

Follow – A behavior similar to chase but maintains a rela-

tive position slightly beside the player, with NPC speed

matching player speed instead of exceeding it.

Bully – Try to harass the player by staying in their way.

Uses relative position based on point of interest (a point

of interest picked to be in the direction the player is head-

ing).

Escape – This is the compliment of chase. Use a high NPC

speed, minimize visibility, and have a large distance

from player to NPC.

Guide – Lead the player to a certain location (point of in-

terest). The guide wants to have a small distance from

player to point of interest, but maintain a high visibility,

so the player can always see the NPC and move towards

it.

More behaviors could be imagined as well. With a larger

set of sample behaviors to break down, we expect to create

a general set of behavior primitives that will be able to

create an exponential number of behaviors with respect to

the number of primitives.

3.1 Generation of Behavior

When all primitives are considered together, they define

an abstract target state that the NPC attempts to move to-

wards. As each primitive has a different semantic meaning,

the way movements are generated by each primitive is

treated individually, and often conflict: for example, for

visibility, the NPC moves towards a space that is closer to

its desired visibility, but this may be further away from a

target relative position. Currently, we combine all move-

ments from each primitive evenly, but how the target is

decided and how a user may author a behavior in this con-

text is a main question of future work.

4 Limitations and Future Work
We have shown how a few simple behavior primitives can

be used to describe and generate a broad range of interac-

tive behaviors. Currently, our set of target behaviors was

arbitrarily chosen, and moving forward we intend to inter-

view professional game designers to develop a better rep-

resentative sample.

We also investigated how the behavior primitives inter-

act and combine to produce the final interactive behavior.

When testing NPC movement generation with a player

character, we manually defined the behavior primitive val-

ues. Through this, we noticed that the target state may

have to change throughout interaction. In some behaviors

the target is static, while in others it changes during the

interaction. This makes the authoring process harder: how

does a designer specify when and how these target primi-

tives change?

These considerations will be used in prototyping and

exploring user interfaces for creation of interactive be-

haviors based on our behavior primitives. Such an inter-

face is non-trivial; for instance, Young et al. had numerous

iterations of their behaviour-authoring interface with nu-

merous user studies to evaluate them, each time noting dif-

ferent advantages and drawbacks [6]. As our fundamental

approach is different (to our knowledge, no previous work

has attempted to use such parameter based behavior au-

thoring), we hope to be able to explore different options,

while also integrating insights from our interviews with

game designers into our interface prototypes.

5 Conclusion
We proposed a novel approach to author interactive be-

haviors for non-player characters in games by considering

the designer’s perspective. With an analytical approach,

we created a set of behavior primitives that can describe

our sample behaviors. We validated this by creating inter-

esting interactive behaviors by hand. Next we will analyze

many more behaviors from real game designers to inves-

tigate the robustness of our approach. While considering

previous work and data from interviews, we will prototype

an interactive behavior authoring interface for users that

takes advantage of our behavior primitive approach.

References
[1] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy,” in Proc.-

SIGGRAPH ’99, pp. 409–416. ACM

[2] T. Igarashi, T. Moscovich, and J. F. Hughes, “Spatial

keyframing for performance-driven animation,” in

Proceedings of the 2005 ACM SIGGRAPH/Eurographics

symposium on Computer animation - SCA ’05, 2005, no.

July, p. 107.

[3] M. McNaughton, M. Cutumisu, D. Szafron et. al

“ScriptEase : Generative Design Patterns for Computer

Role-Playing Games,” in Proc. Conference on Automated

Software Engineering, 2004, pp. 386–387. IEEE.

[4] C. W. Reynolds, “Flocks, herds and schools: A distributed

behavioral model,” in Proc. SIGGRAPH ’87, 1987, pp.

25–34. ACM.

[5] E. Y. Shen and B. Chen, “Toward gesture-based behavior

authoring,” in Proc. Computer Graphics International, pp.

59–65, 2005. IEEE.

[6] J. E. Young, T. Igarashi, E. Sharlin, D. Sakamoto, and J.

Allen. "Design and Evaluation Techniques for Authoring

Interactive and Stylistic Behaviors." In Proc. TiiS '12.

ACM.

