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Abstract: This paper is aimed at describing a framework to implement Multi-Class Support Vec-
tor Machine (MCSVM)-based motion intention recognition. To this end, we primarily constructed
a wearable exoskeleton robot of lower body which is employed as an experimentation platform to
test the MCSVM-based motion intention recognition. Having disclosed prototype development and
MCSVM, experimental results of motion intention recognition of standing up and seating are pre-
sented. We examined the accuracy of method of motion intention recognition based on MCSVM.
We also examined utility of adding information of kinematic model to training data.

1 Introduction

Power assist system is a technology or a device that
amplifies the human ability to exercise, and can be
done to aid the movement expanded. When we wear
power assist system, it is possible to use it in our
everyday life and we can exert. It is expected to be
used in many areas, for example a work site, a medical
front or a disaster site. In the work site, it helps to
reduce the burden of workers. In the medical front,
it helps rehabilitation of the patient. Some have been
studied as military for transport.

Recently, the wearable power assist system has
been studied by many colleges and companies. In the
studies, one of the most famous wearable power assist
system is HAL[1] which has been developed by Sankai
and his team in university of Tsukuba. It has been
developed to help practicing walking. As a develop-
ment stage, it has been lease for welfare. Another
famous study is Bleex[2] for labor support which has
been developed by H. Kazerooni, R. Steger and their
team in university of California, Berkeley.

In wearable power assist system, to develop an ac-
curate recognition method estimating wearer ’s mo-
tion intention is particularly important. To achieve
this purpose, phase-sequence method based on mul-
tiple threshold values of multiple sensors has been
widely used in the conventional studies, e.g. see [1].
However, the tuning of the multiple threshold values
of sensors needs try and error and is time-consuming.
Such threshold value tuning is also sensitive to the
wearer’s situation and needs re-tuning for each wearer.
In order to avoid such time-consuming and sensitive
procedures, we propose a phase sequence method based
on multi-class support vector machine(MCSVM) [3]-
[7] (Method 1). We also propose an improved recog-
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Figure 1: (a) TTI-Exo, being worn by an able-bodied
subject. (b) Schematic of lower body. (c) System of coor-
dinates with their origin at the center of hip joint.

nition method applying both MCSVM and kinematic
model of the exoskeleton mechanism. The effective-
ness of the proposed methods is confirmed by experi-
ments.

2 Experimental system

In order to investigate the usefulness of power assist
system, we built an electrically-actuated whole-body
exoskeleton, named TTI-Exo. Its upper body is pre-
viously utilized for upper body rehabilitation and sys-
tem with an able-bodied wearer and joint power aug-
mentation tasks [8]. Figure.1 shows the actual config-
urations.

Each leg is powered via 2 electrically-actuated ac-
tive DoF (degrees of freedom) in hip and knee joints.
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Figure 2: Dividing of motion

Table 1: Structure of data

Without kinematic model xi = (q2, q4, q̇2, q̇4, p1, p2)

With kinematic model xi = (q2, q4, q̇2, q̇4, p1, p2, xk, zk, xa, za)

Therefore, the robot has no inherent balancing abil-
ity. TTI-Exo is equipped with passive hip joints about
roll axis to allow lateral leg movements. The system
is attached to the wearer using straps and C-shaped
braces. The weight of exoskeleton is supported by
sole. Link lengths are also adjustable for different
wearers in a way to align robot and human joints.

In Figure.1(b), Gray represents the joints which
are equipped with actuators and encoders. White
represents freedom joints. Black ellipse represents the
pressure sensors. We can get following experimental
data from this system { q2: Right hip angle, q4: Right
knee joint angle, p1: Pressure front thigh, p2: Pres-
sure rear leg region }. Angular velocity is calculated
by differentiating the angle { q̇2: Right hip joint an-
gular velocity, q̇4: Right knee joint angular velocity
}.

When hip joint is set at origin, x-coordinate and z-
coordinate of knee joint (xk, zk) and ankle joint (xa, za)
are obtained by kinematic model of exoskeleton mech-
anism by Eq.(1) - (4).

xk = l1 sin q2 (1)

zk = −l1 cos q2 (2)

xa = xk − l1 sin(q4 − q2) (3)

za = zk − l2 cos(q4 − q2) (4)

3 Experiment

Figure.2 shows that motions of standing up and seat-
ing are divided into seven phases and labeled accord-

ing to the direction of joint movement. Each motion
is labeled with number from 1 to 7. We recognized
these seven motions. Data were obtained by motion
in order of phase with TTI-Exo on. When we got
data, motors were moved passively by motion of sub-
ject. Sampling time is 0.01[s]. Discriminant functions
were made by MCSVM using this data. Motion inten-
tion was recognized by simulation using discriminant
function.

3.1 Multi-Class SVM

MCSVM is pattern recognition techniques and classi-
fied into multiple of n-data which present in the m-
dimensional space. It is a supervised learning algo-
rithm. We assume that a training sample of input-
output pairs S = ((x1, y1) , ..., (xn, yn)) where xi is
training data whose structure is showed in Table.1.
The difference between two types of training data is
information of kinematic model.

yi ∈ Y = {1, 2, 3, 4, 5, 6, 7} are label. We obtain w
and ξi by solving Eq.(5).

min
w,ξ≥0

1

2
wTw +

C

n

n∑
i=1

ξi (5)

s.t.∀y1 ∈ Y,
wT [Ψ (x1, y1)−Ψ(x1, y1)] ≥ ∆(y1, y1)− ξ1

...
s.t.∀yn ∈ Y,
wT [Ψ (xn, yn)−Ψ(xn, yn)] ≥ ∆(yn, yn)− ξn



w is a parameter vector and ξi is a slack variable
and C is a constant that controls the trade-off between
training error minimization and margin maximization
and ∆ (y, y) is a loss function and Ψ (xi, y) is a feature
vector. Discriminant functions are expressed follow-
ing.

hw (xi) = argmax
y∈Y

fw (xi, y) (6)

fw (xi, y) = wTΨ(xi, y) (7)

Training data is m×n matrix where m = 6 for the
training data without kinematic model or m = 10 for
training data with kinematic model, and the number
of training samples n = 7500. xi is test data which is
m× 1 matrix.

3.2 Experimental Result

In this subsection we measure the performance of pro-
posed motion intention recognition method by“Pre-
cision”,“ Recall”, and“ Accuracy” using cross-
validation. The data consist of 4 sets of 2500 data.
Note that the last 2500 data is acquisitioned from a
different wearer. The cross-validation is carried using
three of 4 sets of data as training data. Table.2 shows
the result by MCSVM. Table.3 shows the result using
both MCSVM and kinematic model. In both tables,
the result on the #4 data set is the worst because
the test data of the #4 data set is about the different
wearer. Both tables show the proposed method with
MCSVM with kinematic model can achieve reason-
able and practical performance for motion intention
recognition with wearable power assist system.

Table 2: Result of MCSVM

# Precision Recall Accuracy

1 0.7877 0.7741 0.7752

2 0.8277 0.8268 0.9148

3 0.8164 0.8644 0.9072

4 0.5684 0.6096 0.5500

Table 3: Result of MCSVM with kinematic model

# Precision Recall Accuracy

1 0.7270 0.7741 0.8368

2 0.8295 0.8212 0.9132

3 0.8298 0.8460 0.9324

4 0.5046 0.5802 0.6796

4 Conclusion

In this paper we proposed a motion intention recogni-
tion system using phase sequence method based multi-
class support vector machine (MCSVM) and kine-
matic model of exoskeleton mechanism. Using our
wearable power assist system equipped with piezoelec-
tric pressure sensors we confirmed that the proposed
method can achieve the practical performance.
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