
Road to an Interesting Opponent: An Agent that Predicts the 
Users' Combination Attacks in a Fighting Videogame 

Simon E. Ortiz B.1*, Koichi Moriyama2, Mitsuhiro Matsumoto1,  
Ken-ichi Fukui2, Satoshi Kurihara2, and Masayuki Numao2 

1Graduate School of Information Science and Technology, Osaka University 
2Institute of Scientific and Industrial Research, Osaka University 

 
Abstract: In fighting videogames users usually prefer playing against other users rather than against the 
machine. We are assuming that the adaptability of the human player makes it interesting. We are aiming 
to produce an agent for a fighting videogame that can adapt to its users, allowing users to enjoy the game 
even when playing alone. We have completed a part of this continuing project: an agent that predicts the 
users' combination attacks. We introduce this agent and present the results of the experiments.  

 

1  Introduction 
Fighting * videogames are a popular genre of 

videogames with new titles being released every year. A 
fighting videogame is basically a simulation of 
hand-to-hand combat. Fights are carried out in a manner 
similar to boxing matches: usually there are two 
participants, there are several rounds with a given time 
limit, etc. The winner of each round is the user that 
lowers the energy of the opponent to zero by means of 
attacks. 

All fighting videogames are designed to be played by 
at least two users competitively, i.e. users playing against 
one another. However, these games also have the 
possibility of being played by only one user. In this case, 
the machine will take control of the opponent. Users 
generally choose to play against the machine in order to 
advance the story of the game, to practice, or because 
there is nobody around to play with. But, if given the 
option, users usually prefer to play against other users. 

One of the reasons users prefer to play against other 
users could be that the AI that controls the character in 
solo mode is usually uninteresting. This is not to say that 
it is easy to defeat, since the machine can execute 
complicated attacks and respond quickly. Rather, we are 
assuming that the adaptability of the human player makes 
it interesting compared to the machine. However, the 
machine AI used so far is typically of a simple design, 
just enough to make the player feel the software is 
reasonably smart [1], which means that standard 
                                                           
*Contact: ISIR, Osaka University 

Address: 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan 
e-mail: ortiz@ai.sanken.osaka-u.ac.jp 

videogames’ AI is not complex enough to learn users’ 
patterns. 

When two users play against each other, they usually 
fight a battle beyond quick button mashing. Each user 
has a strategy they follow and patterns they develop. The 
fun part of the game is trying to learn each other's 
technique and predict the future actions of his/her 
opponent. We are aiming to produce an agent for a 
fighting videogame that can adapt to its users, simulating 
the learning of each other’s technique. We hope this will 
allow the users to enjoy the game even when playing 
alone. 

In this paper, we present the model of our adapting 
agent for a fighting videogame. Afterwards, we present 
the experiments and results for one of its modules: the 
Receiving-Combo Sub-agent. 

2  The Fighting Videogame 
Typical fighting videogames are one-on-one games. In 

solo mode the user is in control of one character, and the 
AI controls the opponent. 

Each character starts with a predefined amount of HP 
(health points), when their HP reaches zero they lose. 
The objective is to defeat the other character first. 
Usually the fight is decided to the best of several rounds, 
each round has a defined time limit. 

Fighting games have several stages where the fights 
occur. The characters can walk back and forward, jump 
and crouch in a 2D plane of the stage. If the stage has 
edges, falling from the edge typically means immediately 
losing the round. 

Characters have normal attack actions, for example 
punch, kick, and projectile-like long range special attacks 



(from now on we will abbreviate these actions as p, k 
and s respectively). Normal attacks deal low amounts of 
damage compared to combos (combos will be explained 
in detail later). There is usually a block action. If a 
character is using block, normal attacks from the 
opponent will have no effect. The block action deals no 
damage. 

2.1  Combos 
Combos, short for combination attacks, are a common 

game design element found in most modern fighting 
videogames. A combo deals greater damage than normal 
attacks. 

Different games have a different approach to combos. 
We deal with combos of the form of predefined 
sequences of normal attacks successfully executed within 
a brief time limit. For instance, let us consider the 
combos shown in Table 1. The sequence of four punches 
in a row pppp is a combo. When a character 
successfully connects four punches the opponent will 
receive the normal amount of damage of each normal 
attack plus the extra amount of damage defined for this 
combo. If the first two actions of a combo are connected 
then the rest of the actions of the combo cannot be 
blocked using the block action. 

 
Table 1: Combos. 

ID Actions Damage ID Actions Damage
0 pppp 15 6 kppk 20 
1 pppk 20 7 kpps 25 
2 ppps 25 8 kspp 15 
3 pkpp 20 9 ksps 20 
4 pkpk 51 10 kpsp 30 
5 pkps 25 11 kkkk 30 

2.2  Combo-breakers 
Combo-breakers are a way of blocking or 

counter-attacking a combo.  
For some games, including the case we deal with, 

combo-breakers are the only ways to defend from a 
combo. The combo-breaker is one predefined action or 
sequence of actions that can be executed by the character 
receiving the combo. In order to break the combo (i.e. to 
counter-attack it) the action should be executed before 
the combo is completed. When a combo is broken, the 
character receiving the combo will not receive the extra 
damage, instead the character executing the combo will 
receive it.  

An example will clarify this concept. Let us use again 
the combos in Table 1. The sequence pppp is defined as 
a combo. Let us assume that this combo in particular has 
the action p defined as its combo-breaker. If character A 
is executing the combo pppp, and character B executed 
p before A's fourth p, then the combo will be broken and 
A will receive the extra damage. Instead, if B didn't 
execute p before A's fourth p, or if B's last action was not 
p, the combo will not be broken and B will receive the 
extra damage of the combo. 

3  Agent as an Interesting Opponent 
Our goal is to produce an agent for fighting 

videogames that can adapt to the users fighting style, 
allowing users to enjoy the game even when playing 
alone. 

Playing a fighting game can be thought of as dealing 
with three tasks: executing normal attacks plus moving, 
executing combos, and executing combo-breakers when 
receiving a combo. 

The agent is divided into three sub-agents: Main 
Sub-agent, Executing-Combo Sub-agent and 
Receiving-Combo Sub-agent. Dividing tasks should help 
the agent learn each task in less time. 

The Main Sub-agent will move the character and 
execute normal attacks. When deemed appropriate it will 
pass the control to one of the other sub-agents. The 
Executing-Combo Sub-Agent will execute combos of a 
difficulty similar to those of the user's by generating a set 
of combos with similar features to those of the set of the 
user’s combos. The Receiving-Combo Sub-agent will 
learn the combo patterns of the user and try to execute 
the appropriate combo-breakers. 

The agent composed of the mentioned sub-agents will 
be able to move away from the user or get close to 
him/her depending on whether the user will attack or not, 
execute combos appropriate to the level of the user, and 
learn the user’s combo patterns to response adequately.  

We have completed a part of this continuing project: 
the Receiving-Combo Sub-agent (referred to henceforth 
as RCSA). Next we introduce the model behind the 
RCSA. 

3.1  Receiving-Combo Sub-agent 
The objective of the RCSA is to choose the proper 

combo breaker for the combos executed by the user. 
Since the combo-breaker must be executed before the 

last action of a combo, the problem becomes predicting 
the full combo given its beginning and the combos 



previously executed by the user.  
Since videogames must run in real-time, all the 

learning is delayed until the end of each episode. The 
resulting data is stored in a way that allows for quick 
decisions in real-time when used in the next episode. 

We propose utilizing Substring Tree [2], a pattern 
mining technique, to learn the user's pattern and predict 
the adequate combo-breaker.  

3.2  Pattern learning for Combo-breaking 
Although studies have yet to be conducted, it is 

reasonable to expect that users develop patterns and 
routines in fighting videogames, because these patterns 
allow the user to execute a series of attacks quickly 
without having to decide each attack and a series of 
quick attacks is harder to defend from.  

For this agent we utilize Substring Tree [2], an 
algorithm for mining frequent spatio-temporal data. 
Adapting the algorithm to mine combo patterns is trivial: 
the discrete spatial regions originally defined for the 
algorithm are substituted by the IDs of the combos. Then 
the algorithm is used as presented in [2]. 

The Substring Tree algorithm 
returns the set of frequent 
sequences of combos used by 
the user and their frequency. We 
transform this data into a 
decision tree where the nodes 
contain combos with their 
frequency. We start with the 
empty tree, and insert each 
frequent sequence of combos 
beneath the empty root node. 

Sequences with the same beginning will share parts of 
the tree. For example, if Substring Tree returns {{a, b, c, 
d}, {b, c, d}, {b, c, e}, {c, a}, {c, b}, {c, d}} then the 
decision tree will be the one shown in Figure 1. 

Since the user can have patterns of various lengths, the 
agent tracks all possible patterns up to length n 
simultaneously. In order to do so, the agent traverses the 
tree following the combos recently executed by the user 
during the episode. The agent uses n pointers to the tree 
at the same time. Each of the n pointers tracks a sequence 
of size 1, 2, …, n combos. For example, if the user 
executed combos a, b, c then the first pointer will be at 
the rightmost branch of Figure 1, the branch that starts 
with c; the second pointer will point at node c from the 
center branch, below b; the third pointer would point to 
node c from the leftmost branch, below b below a; etc. If 

for a given pointer that tracks patterns of length l, the 
sequence of combos executed by the user does not match 
a sequence of combos of length l in the tree, then the 
corresponding pointer will be considered invalid. 
action decide_combo_breaker(): 

action combo_head[m] := the first 
m actions of the combo being 
executed 

combo useq[n] := last n combos executed 
         by the user, most recent first
pointer p[n] 
roulette := probabilistic roulette 
for 1 <= i <= n : 
   p[i] := track(useq, i) 
for all pointers p != null : 
   for all children c of p : 
      if c.head == combo_head : 
         roulette.add(c, c.frequency)
return roulette.random() 
 

node track (combo seq[], int q): 
pointer node := decision_tree.root 
for 1 <= i <= q : 
   if node.has_child(seq[i]) : 
      node := node.get_child(seq[i])
   else : 
      node := null 
      break 
return node 

Figure 2: Pattern Learning's combo-breaker selection 
algorithm.  

The combo-breaker is decided following the 
algorithm in Figure 2. What the agent basically does is 
this: for all the pointers pointing to a valid node, it 
searches beneath them for a partial match for the combo 
being executed at the current time. It chooses a 
combo-breaker stochastically by their relative frequency 
among the breakers found under the pointers. 

4  Evaluation 
In order to carry out our research we created a simple 

fighting videogame using C++ and the open source 
real-time 3D graphics engine Crystal Space [3]. As can 
be seen in Figure 3 the game is very simplistic. The 
characters have the normal attacks p, k and s (the 
projectile is a sphere that moves linearly for 3 seconds 
before disappearing), and the block action. The initial HP 
is 200. Each fight is composed of only one round without 

 

Figure 1: Combo Tree 



time limit. From the agent’s perspective, one round is one 
episode. 

The combos are defined as fixed sequences of normal 
attacks successfully executed within 0.5 seconds between 
each attack. The combos used are those shown in Table 1. 
The combo-breakers are defined for each combo as the 
last action of the combo. If the character receiving the 
combo executed more than one action, only the last 
action will be considered as the combo-breaker 
candidate. 

For the Pattern Learning agent we defined the length 
of combos to be tracked to be five, and the size of the 
head of the combos (the parameter m of the algorithm 
decide_combo_breaker in Figure 2) to be three. 

For comparison purposes we defined three more 
agents: the random agent, Bandit and Time-weighted 
Bandit. The reason behind our selection of these methods 
is that they are AI that is simple enough to be 
implemented in a standard fighting videogame, yet they 
allow the agent to adapt to the user to a certain degree. If 
we would like to compare our proposed agent with 
standard game agents these could be a good 
approximation. 

4.1  Bandit 
This agent models the problem of choosing a 

combo-breaker in a manner similar to the n-armed Bandit 
Problem [4]. The n-armed Bandit Problem is the problem 
of deciding which of n available actions execute in one 
unique state. Each action gives an immediate reward. The 
unique state is presented several times to the agent. The 
goal of the agent is to maximize the outcome in a defined 
number of episodes. 

In our case, the unique state is defined by the head of a 
combo. The available actions are the normal attacks p, k, 
s. The learning method is calculating the proportion of 
each last action chosen by the user in a given state. The 
action is chosen by a random roulette, where each action 
has a probability of being chosen equal to its proportion 
of appearance. 

4.2  Time-weighted bandit 
This learning method is similar to Bandit with the 

difference that the weight of each action for a given state 
does not depends only on the number of times it appears, 
but on how recently it was used.  

For a given state, the weight w of a given action a will 
be updated as follows: in the case in which action a was 
chosen by the user at time t 

( ) ( )

∑
=

−
n

i

i

n
n

+aw=aw

0

1  1

α

α
 

for all the other actions z not chosen by the user at time t  

( ) ( )

∑
=

−
n

i

i

n
n

zw=zw

0

1

α

α
 

where α is a discount factor equal to 0.9. 
This method for calculating the weights is based on the 

formula for eligibility traces used in the algorithm TD(λ) 
from the Reinforcement Learning field [4]. Basically, we 
are incrementing the weight of the action used more 
recently and discounting all the other available actions. 
This value is normalized by the summation of the 
discount factors, which allows the selection of the action 
to be probabilistic, similar to the Bandit method. 

4.3  Experiments 
For each experiment we conducted four trials. After 

each trial the learning process was reset. 
The tests were conducted through a simulated user. 

This simulated user obeys the following four patterns to 
execute combos: pattern 1: {5, 3, 8, 10, 2, 4}; pattern 2: 
{0, 2, 9, 1, 7, 2}; pattern 3: {5, 11, 2, 10, 3}; pattern 4: {1, 
8, 11, 9}. 

Each pattern was chosen using a random number 
generator. The number inside the patterns represents the 
ID of a combo in Table 1. To test the learning abilities of 
the agents for different pattern sizes we chose patterns of 
size 6, 6, 5 and 4 respectively. 

 

Figure 3: A screenshot of our simplistic fighting game. 



We ran five different simulations:  
-Random: The combos executed by the simulated user 

were chosen randomly, not following any pattern. 
-Single: The simulated user executes combos 

following pattern 1. 
-Change 1-2-1-2: For the first 10 episodes the 

simulated user executes pattern 1, for the next 10 
episodes use pattern 2, repeat once. 

-Change 1-2-3-4: The simulated user executes patterns 
1, 2, 3 and 4 for 10 episodes each. 

-Simultaneous: The simulated user chooses a pattern 

randomly, executes the combos defined in it, then 
chooses a new pattern randomly. 

We measured the accuracy of each method for each 
episode. The accuracy is defined as the number of 
successfully executed combo-breakers divided by the 
number of combos presented to the agent. The results are 
shown in Figure 4. For brevity, we chose to show a 
representative result from each simulation. 

As expected, the learning from the Random simulation 
does not seem to converge to any value. There is no 
information to be learned. 

  

  

 

Figure 4: Results from the experiments. 



From the Single simulation we see that Pattern 
Learning can learn one single pattern in few episodes, 
usually around three.  This agent improves the accuracy 
of its predictions very fast and seems to converge to 
around 85% accuracy. As expected, the random agent has 
an average accuracy of 33% (there are three possible 
actions out of which there's only one valid). Both Bandit 
and Time-weighted Bandit learn combo-breakers, but are 
dominated by Pattern Learning. 

From Change 1-2-1-2 we can see that Pattern 
Learning gets confused when presented for the first time 
with a new pattern, but it adapts in a couple of episodes. 
When presented with previously learned patterns there 
seems to be no confusion. Both Bandits also get confused 
when presented with a new pattern, and also get confused 
when presented with previous patterns. This is due to the 
fact that the most recent patterns have a different 
combo-breaker distribution from the learned patterns and 
these methods cannot distinguish between distributions. 

In Change 1-2-3-4 the Pattern Learning agent quickly 
recovers as in Change 1-2-1-2. The Time-weighted 
Bandit also got confused as in previous simulations. 
Bandit improved its accuracy from pattern 2 to pattern 3. 
This is possibly due to the fact that in pattern 3, combos 
10 and 11 only have one possible breaker and combo 2 is 
presented isolated from combos with similar heads. 

In the case of the Simultaneous simulation, it can 
be seen that Pattern Learning can manage more than one 
pattern at a time. However, it takes nearly five times 
more episodes to get close to the previous 85% accuracy. 
This can be due to the fact that it takes several episodes 
to experience all the available patterns. Considering the 
extra damage assigned to each combo and the HP of 200, 
each episode finishes after the execution of around 10 
combos. This means that each episode the agent only 
experiences two patterns, the second one possible 
incompletely. The Bandits are dominated by Pattern 
Learning most of the time, and their behavior seems less 
accurate. The different distribution of the 
combo-breakers for each pattern affects their accuracy 
prediction.  

5  Related works 
Academic level AI has been applied to learning how to 

fight in a fighting videogame without considering 
adapting to the user [5]. Reinforcement learning has been 
applied to adapting the opponents of a videogame to its 
users, in this case it was not a fighting videogame, it was 
Pac-Man [6]. 

6  Conclusions 
Pattern Learning is the method better suited to 

learning to execute combo-breakers because it can 
identify the context of each combo and it tends to an 
accuracy of 85%. The reason why it does not have an 
accuracy of 100% even in the Single simulation is due to 
the fact that it is tracking more than one possible pattern 
and chooses the combo-breaker stochastically based on 
its frequency. 

Is the Pattern Mining RCSA a more interesting 
candidate for our fighting videogame? At this stage it is 
hard to know. In the final version of the game, predicting 
the combos of the user will be just one part of the entire 
system. We have not found in the literature which is the 
most interesting win-lose rate for a fighting videogame. 
If a more difficult opponent is a more interesting 
opponent, then the Pattern Learning agent would be our 
best choice.  

References 
[1] Adams E.: Fundamentals of Game Design (2nd ed.), New 

Riders (2009) 
[2] Cao H., Mamoulis N., and Cheung D.: Mining Frequent 

Spatio-temporal Sequential Patterns, Proceedings of the 
Fifth IEEE International Conference on Data Mining, 
pp. 82-89 (2005).  

[3] http://www.crystalspace3d.org/ 
[4] Sutton R., Barto A.: Reinforcement Learning, An 

Introduction, The MIT Press (1999) 
[5] Graepel T., Herbrich R., Gold J.: Learning to Fight, 

Proceedings of Computer Games: Artificial Intelligence, 
Design and Education, pp. 193-200 (2004) 

[6] Yannakakis G., Hallam J.: Evolving Opponents for 
Interesting Interactive Computer Games, Proceedings of 
the Eighth International Conference on the Simulation of 
Adaptive Behavior; From Animals to Animats 8, pp. 
499-508 (2004) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


