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Abstract— In this paper, we propose a novel method to detect
robot-directed speech by situated understanding in human-robot
physical interaction. The originality of this work is the introduction
of a Multimodal Semantic Confidence measure based domain clas-
sification method, which is used to decide whether the speech can be
interpreted as a feasible action under the current physical situation
in an object manipulation task. This measure is calculated by
integrating speech, image, and motion confidence with weightings
that are optimized by logistic regression. Then we integrated this
method with human attention, and conducted experiments under
the conditions of natural human-robot interaction.

keywords: robot-directed speech detection, multimodal se-
mantic confidence, human-robot interaction

I. INTRODUCTION

Robots are now being designed to be a part of the lives of
ordinary people in social and home environments. One of the
key issues for practical use is the development of user-friendly
interfaces. Speech recognition is one of our most effective
communication tools for use in a human-robot interface. In
recent studies, many systems using speech-based human-robot
interfaces have been implemented, such as [1]. For such an
interface, the functional capability of detecting robot-directed
(RD) speech is crucial. For example, user’s speech directed to
another human listeners should not be recognized as commands
directed to a robot. To resolve this issue, methods have been
implemented by many studies, mainly based on two approaches:
(1) using the characteristics of the acoustic features of speech
and, (2) using human attention such as gaze tracking or body-
orientation detection.

As examples of the first approach, Itoh et al. [2] and Yamada
et al. [3] have mentioned that some acoustic and linguistic fea-
tures were affected by whether the dialogue partner is a human
or a machine, while some acoustic features alone were affected
by concurrent tasks such as a car-driving task. Yamagata et al.
[4] have mentioned that acoustic differences of system requests
and spontaneous speech usually appears on the head and the tail
of the speech, and proposed acoustic based methods for discrim-
inating RD speech from other speech by using power and pitch
features [4], [5]. In these works, robot/system directed speech
detection is performed based on analyzing the differences in
acoustic and linguistic features between robot/system directed
speech and other speech. However, this kind of method requires
human users to adjust their speaking style or accent to fit the
robot/system, which causes an additional burden to them.

On the other hand, human attention based systems have
been discussed for a long time as natural, easy, ambient, or

Cool robot!
What canit do?

It can understand your
command, like “Place big

Kermit on the box.”

Fig. 1. People talking while looking at a robot.

subconscious interactions [6]. Schilit et al. [7] have mentioned
about context awareness in human-computer interaction, various
systems using computers have been developed for providing
appropriate services or interactions corresponding to the user’s
current situation by detecting various kinds of modal informa-
tion. Lang et al. [8] proposed a multimodal attention system
based by using a camera for human face recognition, two
microphones for sound source localization, and a laser range
finder for leg detection for a mobile robot to automatically
recognize when and how long a person’s attention is directed
towards it for communication. Yonezawa et al. [9] proposed
“Crossmodal Awareness” for a daily-partner robot to commu-
nicate with human based on the detection of human attention
direction by the proportion of the user’s gaze at the robot during
her/his speech. These ideas were aimed toward ambient sensing
of smart interactions for human-robot communication by human
attention. However, they also raises an issue. That is, human
users may say something irrelevant to the robot/computer while
their attention is focused on it. Consider the following conver-
sation where users A and B are talking while looking at the
robot in front of them (Fig. 1).

A: Cool robot! What can it do?
B: It can understand your command, like “Place big Kermit

on the box.”
However, the speech here is not direct to robot. Moreover,

even if user B makes a speech that resembles an RD speech
(“place big Kermit on the box.”), he does not really want to
give such an order because the box and Kermit do not exist in
the current situation. How can we build a robot that responds
appropriately in this situation? Attention based methods are
ineffective here. To address this kind of problem, in this work,



Fig. 2. Robot used in the object
manipulation task.

Fig. 3. Scene corresponding to
“Place big Kermit on the box.”

we proposed a novel method to detect RD speech that is not only
based on human attention detection but also based on domain
classification of input speech between (1) the RD domain of
RD speech and (2) out-of-domains (OOD) of other speech. The
proposed method takes following steps:

(1) For each input speech, human behaviors is used to detect
the direction of human attention during the speech. The speech
without human attention focused on robot is rejected.

(2) For the speech with human attention focused on robot,
domain classification is performed by calculating Multimodal
Semantic Confidence (MSC) measure.

The main contribution of this work is the introduction of a
MSC based domain classification method. MSC is a measure
which decides whether the speech can be interpreted as a
feasible action under the current physical situation in an object
manipulation task. On the other hand, conventional studies on
domain classification have typically focused on using speech
recognition confidences [10], [11], or topic classification [12].
However, for a domain classification problem to be solved by a
robot, we assume that in addition to speech signals, non-speech
information would also be helpful because robots communicate
in the real world not only with hearing but also with sight,
touch, and so on. Therefore, in this work, domain classification
is based on MSC measure, which is calculated by using both
speech inputs and physical situations.

The rest of this paper is organized as follows: Section II
gives the details of the object manipulation task. Section III
describes the proposed method. The experimental methodology
and results are presented in Section IV. Section V gives a
discussion. Finally, Section VI concludes the paper.

II. OBJECTMANIPULATION TASK

The target task of this work is called an object manipulation
task, in which the robot shown in Fig. 2 manipulates objects
according to a user’s speech. Figure 3 depicts a camera image
of the current physical situation under the command utterance
“Place big Kermit on the box.” Here, the robot is told to place
object 3 (big Kermit) on object 2 (box). The solid line shows the
trajectory intended by the user. The trajectory can be interpreted
by the positional change of the relationship between the moved
object (trajector) and the reference object (landmark). In the
case shown in Fig. 3, the trajector and landmark are objects 3
and 2, respectively.

III. T HE METHOD

An overview of our method is shown in Fig. 4. First, the
audio signal is used for detecting the human speech by a GMM-
based end-point detection (GMM-EPD) method which is used
in ATRASR [13], and the camera images are converted to the
human face angles. Both of these detected inputs are used to
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Fig. 4. An overview of the proposed method.

determine the direction of human attention. The human attention
is estimated by the proportion of the human face toward to
the robot during her/his speech. If the proportion is higher
than fifty percent, the system judges the robot to be the focus
of human attention during the speech. Then, for the speech
with human attention focused on robot, speech understanding
(as described later for detail) is performed to interpret the
meaning of it as a feasible action by using the information
on current physical situation. To evaluate the feasibility of
the action, three confidence measures are calculated:CS for
speech,CI for the static images of the objects, andCM for
the trajectory of motion (as described later for detail). The
weighted sum of these confidence measures with a bias is
inputted to a sigmoid function. The bias and the weightings,
{θ0, θ1, θ2, θ3}, are optimized by logistic regression. Here, the
MSC is defined as the output of the sigmoid function, and
represents the probability that the speech is RD speech. Finally,
domain classification is performed based on this probability. If
the input speech is decided to be in RD domain, robot executes
an action according to this speech.

A. Speech Understanding

We previously proposed a machine learning method called
LCore that enables robots to acquire the capability of linguistic
communication from scratch through verbal and nonverbal
interaction with users [14]. In this study, we employ the speech
understanding method used in LCore.

In the process of the speech understanding, we assume that
speechs can be interpreted with conceptual structurez =
[(Motion: wW ), (Trajector: wT ), (Landmark:wL)], where
wM , wT , andwL represent the phrases describing motion, a
trajector, and a landmark, respectively. (Orz = [(Motion:wM ),
(Trajector:wT )] for an action that does not need a landmark).
The order of the components inz represents the word sequence
of s. For example, in Fig. 3, utterance “Place big Kermit on the
box” is interpreted as [(Motion: “Place-on”), (Trajector: “big
Kermit”), (Landmark: “box”)].

Given speechs and current physical situation, speech under-
standing selects the optimal actiona based on the conceptual
structurez by a multimodal integrated user model that is trained
by the interaction between the user and the robot. In this paper,
a is defined asa = (t, ξ), where t and ξ denote a trajector



and a trajectory of motion, respectively. The physical situation
consists of current sceneO, which includes the visual features
and positions of all objects in it, and behavioral contextq,
which includes information on which objects were a trajector
and a landmark in the previous action and on which object the
user is now holding. A user model integrates the five belief
modules – (1) speech, (2) motion, (3) vision, (4) motion-object
relationship, and (5) behavioral context – and is called shared
belief. Each of the five belief modules in the shared belief is
defined as follows:

SpeechBS : This module is represented as the log probability
of s conditioned byz, under lexiconL and grammarGr. It is
written aslog P (s|z; L)P (z; Gr), whereL includes pairs of a
word and a concept, each of which represents the static image of
the object and the motion as well as particles.Gr is represented
by the statistical language model for possible robot commands.
In this paper, the word is represented by HMMs using mel-
scale cepstrum coefficients and their delta parameters (25-
dimensional). ATRASR [13] was used for phoneme recognition.

Concept of static image of objectBI : This module,
which is represented as the log likelihood of Gaussian dis-
tributions in a multi-dimensional visual feature space (size,
color (L∗, a∗, b∗), and shape), is written aslog P (ot,f |wT ; L)
and log P (ol,f |wL; L), whereot,f and ol,f denote the visual
features of trajectort and landmarkl in sceneO.

Concept of motion BM : This module is represented as
the log likelihood of HMM using a sequence of vertical and
horizontal coordinates of the trajectoryξ, given motion word
wM . It is written asP (ξ|ot,p, ol,p,wM ; L), whereot,p and
ol,p denote the positions oft and l.

Motion-object relationship BR: This module represents
the belief that in the motion corresponding to motion word
wM , featuresot,f andol,f of objectst and l are typical for a
trajector and a landmark, respectively. This belief is represented
by a multivariate Gaussian distributions,P (ot,f , ol,f |wM ; R),
whereR is its parameter set.

Behavioral contextBH : This module represents the belief
that the current speech refers to objecto, given behavioral
contextq. It is written asBH(o, q; H), whereH denotes its
parameter set.

Given weighting parameter setΓ=
˘
γ1..., γ5

¯
, the degree of

correspondence between speechs and actiona is represented
by shared belief functionΨ written as

Ψ(s,a, O, q, L, Gr, R, H,Γ) =

max
z,l

„
γ1 log P (s|z; L)P (z; Gr) [BS ]

+γ2

“
log P (ot,f |wT ; L) + log P (ol,f |wL; L)

”
[BI ]

+γ3 log P (ξ|ol,p, ot,p,wM ; L) [BM ]

+γ4 log P (ot,f , ol,f |wM ; R) [BR]

+γ5

“
BH(t, q; H + BH(l, q; H)

”«
, [BH ]

(1)
where conceptual structurez and landmarkl are selected to
maximize the value ofΨ. As the meaning of speechs under
sceneO, corresponding action̂a is determined by maximizing
Ψ:

â = (t̂, ξ̂) = argmax
a

Ψ(s, a, O, q, L, Gr, R, H,Γ). (2)

Finally, actionâ = (t̂, ξ̂), selected landmark̂l, and conceptual
structureẑ are outputted. Then the MSC measure is calculated
based on these outputs.

B. MSC Measure

Next, we describe the proposed MSC measure. MSC measure
CMS is a measure of the feasibility for action̂a under the cur-
rent physical situation and represents an RD speech probability.
For input speechs, current sceneO, and behavior contextq,
CMS is calculated based on the outputs of speech understanding
(â, l̂, ẑ) and is written as

CMS(s, O, q) = P (domain = RD|s, O, q)

=
1

1 + e−(θ0+θ1CS+θ2CI+θ3CM )
,

(3)

where CS , CI , and CM are the confidence measures of the
speech, the object images, and the trajectory of motion.Θ=
{θ0, θ1, θ2, θ3} is applied to these confidence scores. Then,
given a thresholdδ, speechs with a MSC measure higher than
δ is treated as in RD domain.

1) Speech Confidence Measure:The confidence measure of
speechCS is calculated by weighting the observed phoneme
sequence’s likelihood against the one of an unconstrained model
sequence. It is conventionally used as a confidence measure for
speech recognition [15], and is calculated as

CS(s, ẑ; A, Gp) =
1

n(s)
log

P (s|ẑ; A)

maxy∈L(Gp) P (s|y; A)
, (4)

where n(s) denotes the analysis frame length of the input
speech,P (s|ẑ; A) denotes the likelihood of word sequenceẑ
for input speechs by a phoneme acoustic modelA, y denotes
a phoneme sequence, andL(Gp) denotes a set of possible
phoneme sequences accepted by phoneme networkGp. For
speech that matches robot command grammarGr, CS has a
greater value than speech that does not matchGr.

The basic concept of this method is that it treats the likelihood
of the most typical (maximum-likelihood) phoneme sequences
for the input speech as a baseline. Based on this idea, the con-
fidence measures of image and motion are defined as follows.

2) Image Confidence Measure:As a baseline of the image
confidence measure, the likelihood of the most typical visual
features for selected objects can be obtained by maximizing
Gaussians of the objects. For visual featuresot̂,f andol̂,f of t̂

and l̂, which are represented bŷwT andŵL, respectively, the
image confidence measure is calculated by the summed log-
likelihood ratios of likelihood and baseline. It is written as

CI(ot̂,f ,ol̂,f , ŵT , ŵL; L) =

log
P (ot̂,f |ŵT ; L)P (ol̂,f |ŵL; L)

maxof P (of |ŵT )maxof P (of |ŵL)
,

(5)

whereP (ot̂,f |ŵT ; L) andP (ol̂,f |ŵL; L) denote the likelihood
of ot̂,f and ol̂,f , maxof P (of |ŵT ) and maxof P (of |ŵL)
denote the maximum likelihood for object image models that
are treated as baselines, andof denotes the visual features in
object image models.

3) Motion Confidence Measure:As a baseline of the motion
confidence measure, the likelihood of the most typical trajectory
for motion wordŵM , given positionsot̂,p andol̂,p of trajector
t̂ and landmark̂l, can be obtained by maximizing HMMs of the



motion, while treating the trajector position as a variable. Then
the motion confidence measure is calculated as

CM (ξ̂, ŵM ; L) = log
P (ξ̂|ot̂,p, ol̂,p, ŵM ; L)

maxξ,op P (ξ|op, ol̂,p, ŵM ; L)
, (6)

whereP (ξ̂|ot̂,p, ol̂,p, ŵM ; L) denotes the likelihood for trajec-
tory ξ̂ andmaxξ,op P (ξ|op, ol̂,p,wM ; L) denotes the likelihood
of the maximum likelihood trajectoryξ of motion wordŵM ,
when the trajector position is variable,op denotes this variable.

4) Optimization of Weights:We now consider the problem of
estimating weightΘ in Eq. 3. Theith training sample is given
as the pair ofCi

MS = CMS(si, Oi, qi) and teaching signaldi.
Thus, the training setTN containsN samples:

TN = {(Ci
MS , di)|i = 1, ..., N}, (7)

wheredi is 0 or 1, which represents OOD speech or RD speech,
respectively.

A logistic regression model [16] is used for optimizingΘ.
The likelihood function is written as

P (d|Θ) =

NY
i=1

(Ci
MS)di

(1− Ci
MS)1−di

, (8)

where d= (d1, ..., dN ). Θ is optimized by the maximum-
likelihood estimation of Eq. 8 using Fisher’s scoring algorithm
[17].

IV. EXPERIMENTAL METHODOLOGY

A. Hardware Setting and Preparation of the Belief Modules

We conducted experiments using the robot shown in Fig. 2.
This robot consists of a manipulator with 7 degrees of freedom
(DOFs), a four-DOF multifingered grasper, a directional micro-
phone for audio signal input, a web camera for face tracking, a
stereo vision camera and an infrared camera for objects tracking,
and a head unit for robot gaze expression.

The five belief modules (BS , BI , BM , BH andBR) and
shared belied functionΨ were learned beforehand by a method
described in [14]. During the learning, 56 words, including 40
nouns and adjectives, 19 verbs representing 10 motions, and 7
particles were used. After learning, the values of parameter set
Γ=

˘
γ1..., γ5

¯
in Eq. 1 were set to:γ1 = 1.00, γ2 = 0.75,

γ3 = 1.03, γ4 = 0.56, andγ5 = 1.88.
To evaluate the proposed method, we conducted two kinds

of experiments: (1) learning of the MSC function (Eq. 3) by
a batch processing, and (2) evaluating the proposed method in
the object manipulation task.

B. Experiment 1

1) Experimental Setting:We conducted a batch experiment
to learn the MSC function. The training and test data was
obtained by taking following steps. First, we prepared 160
speech samples and manually labeled them as either RD or
OOD (80 RD and 80 OOD). Then we gathered this speech from
16 subjects (8 males and 8 females) in a soundproof room with
a SANKEN-CS5 directional microphone without noise. All of
these subjects were native Japanese speakers, and each of them
sat on a bench one meter from the microphone and produced the
pre-determined speech in Japaneses. As a result, we obtained
a clean speech corpus including 2560 speech samples. Finally,
we paired each speech with a scene file, which was captured by
the stereo vision camera. Each scene file included three objects

in average. Figure 3 shows an example shot of a scene file. In
this figure, the yellow box on object 3 represents the behavioral
contextq, which means object 3 was manipulated most recently.

By using these clean speech-scene pairs, we performed leave-
one-out cross-validation: 15 subjects’ data was used as a training
set, and the remaining 1 subject’s data was used as a test set and
repeated 16 times. During cross-validation,Θ was optimized,
and the averages were:θ̂0 = 5.9, θ̂1 = 0.00011, θ̂2 = 0.053,
and θ̂3 = 0.74.

Then we tested these averages under noisy conditions. We
obtained a noisy speech corpus by mixing each speech sample in
the clean speech corpus with dining hall noise at a level from 50
to 52 dBA and then performed noise suppression [18]. The same
scene files which were used to pair with the speech in clean
corpus were also used here to produce the noisy speech-scene
pairs. The evaluation under noisy conditions was performed by
using these noisy speech-scene pairs without cross-validation.

The human attention was not used in this experiment. For
each speech-scene pair, speech understanding was performed
directly, then the MSC measure was calculated. During speech
understanding, accuracies of83% and67% in phoneme recog-
nition were obtained for the clean speech corpus and the noisy
speech corpus, respectively.

For comparison, we used a baseline that performs RD speech
detection based on the speech confidence measure.

2) Results:Figures 6 and 7 show the precision-recall curves
for the clean and noisy speech corpora. The MSC measure and
baseline performances are shown by “MSC” and “Baseline.”
The two lines clearly show that the MSC measure outperforms
the baseline for RD speech detection, for both clean and noisy
speech corpora. Moreover, the performances using the partial
MSC measure are shown by “Speech-Image” (using the con-
fidence measures of speech and image) and “Speech-Motion”
(using the confidence measures of speech and motion). These
lines show that both image and motion confidences helped
to improve performance. The average maximum F-measures
of MSC and baseline were99% and 94% for clean speech
corpus, respectively, and95% and83% for noisy speech corpus,
respectively. MSC achieved an absolute growth of5% with the
clean speech corpus and12% with the noisy speech corpus for
average maximum F-measure. Then we performed the paired t-
test and found that there were statistical differences (p < 0.01)
between MSC and baseline for both clean and noisy speech
corpora. Note that MSC obtains a high performance of95%
even for the noisy speech corpus, while the baseline obtains
83%. This means that MSC is particularly effective under noisy
conditions.

To perform an RD domain classification by MSC, a threshold
could be set tôδ = 0.79, which maximized the average F-
measure for the clean speech corpus. This means that a speech
with a high RD speech probability of more than79% will be
treated as being in the RD domain and the robot will execute
an action according to this speech.

C. Experiment 2

1) Experimental Setting:Next, by using the weighting set̂Θ
and the threshold̂δ optimized in experiment 1, we conducted
an experiment with the object manipulation task. In this experi-
ment, 2 subjects stay in front of the robot and ordered the robot
to manipulate objects according to the current physical situation
by Japaneses. The subjects were also allowed to chat with each



Fig. 5. The recall rate, precision rate and F-measure of five criteria obtained from the experiment.

Fig. 6. Precision-recall curve for clean speech.

Fig. 7. Precision-recall curve for noisy speech.

other freely during the experiment. In the experiment, human
attention was detected by face angles. All human speech as well
as noise was input into the system.

We conducted a total of 4 sessions of this experiment by 4
pairs of subjects, each session lasted for 50 minutes. All subjects
were adult males. During the experiment, surrounding noise
about 48dBA from the robot’s power always existed. In the
experiments, a total of 983 speech was made, each of which was
manually labeled as either RD or OOD after the experiments.

2) Result: First, the result of human attention detection is
shown in table I. “RD” and “OOD” represent the quantities
of RD speech or OOD speech that was manually labeled after

TABLE I
THE RESULT OF HUMAN ATTENTION DETECTION IN EXPERIMENT2.

With Without
attention attention Total

RD 155 10 165
OOD 553 265 818
Total 708 275 983

the experiments, respectively. “With attention” and “Without
attention” represent the quantities of speech during which
human attention was focused on robot or not, respectively.
“Total” represents the total speech made in the experiments.
In this table, we can see that (1) almost all RD speech was
made while subjects were facing to the robot and, (2) there was
also a lot of OOD speech with the human attention focused on
the robot. This caused a high recall rate and low precision rate.

Then we give a result of the proposed method by Fig. 5. We
made comparisons among five criteria: (1) use human attention
only, (2) use human attention and speech confidence measure,
(3) use human attention and speech-image confidence measures,
(4) use human attention and speech-motion confidence mea-
sures and, (5) use human attention and MSC measure. The
recall rates, precision rates and F-measures of them are shown
by “Attention”, “Attention-Speech”, “Attention-Speech-Image”,
“Attention-Speech-Motion” and, “Attention-MSC”, respectively.
In this figure, we can see that comparing to the human attention
only, by using the proposed method (human attention and MSC
measure), the precision rate was greatly enhanced from22%
to 96%, when the recall rate remained almost unchanged, and
leaded to an absolute growth of61% for F-measure. Moveover,
in this experiment, both image and motion confidences also
helped to improve performance.

V. D ISCUSSION

Human attention is very important to distinguish the target of
one’s speech in human daily communications. However, it does
not work effectively when used for a robot to detect RD speech
in human-robot interactions because human does not treat the
robot as a real person, and usually talk while pay attention to
robot. According to this reason, we implemented MSC measure,
and integrated it with human attention for robot to detect RD
speech.

Moreover, for a robot in social and home environments,
surrounding noise always exists. This decreases the reliability of
speech recognition. Consequently, we believe that, in addition to
the speech signal, other information should be used to improve
the performance for RD speech detection. In this work, we



calculated MSC measure by speech, image and motion, and
demonstrated its validity by experiments.

However, MSC has some limitations:
(1) To calculate the image and motion confidence measures,

the manipulated object must be in a position that is visible to
the robot. For speech that includes objects that are not in the
robot’s vision, the MSC measure will no longer be effective.
This issue can be solved by an active exploration by the robot:
when such an object is not visible, the robot will search for it
in its surroundings.

(2) MSC is not suitable for tasks such as a dialog task that is
not grounded in a physical situation. For such a task, a method
that switches between the speech confidence and MSC measures
should be implemented.

VI. CONCLUSION

In this paper, we proposed a novel method for RD speech de-
tection by integrating human attention and MSC based domain
classification, and evaluated it by experiments under conditions
of human-robot interaction. The contribution of this paper
is a new paradigm for a robot to use in distinguishing the
information to which it should respond, which is as crucial
importance for assistive robots supporting human users in daily
environments.
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