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Human-centered research has garnered significant insights and feedback from active human participants. How-
ever, effectively handling and utilizing this feedback to train AI agents remains a challenge. To ensure optimal
performance in downstream tasks such as image classification or segmentation and to efficiently distill human input
for large dataset tasks, We propose a novel UI designed for the rapid collection of feedback pertaining to clustering
on a large scale. This feedback is subsequently incorporated into an end-to-end training model, facilitating the
transfer of human metrics to the AI system. Unlike typical accuracy-oriented models, our approach emphasizes
the interpretability of decision-making processes. It can provide insights into the prediction results obtained after
the reference selective prototype, offering a unique perspective on the deep model controlling.

1. Introduction

The majority of existing research has concentrated on

interactive interfaces akin to LLM designed for question-

answering. This involves iterative rounds aimed at preserv-

ing context and correcting logical aspects to arrive at a

conclusive result. We designed an interactive interface for

users to observe and revise cluster results in four rounds,

effectively handling must-link and cannot-link constraints

for inter-cluster and intra-cluster distance measures by in-

corporating the COP-KMeans [5] algorithm. In this way, it

is more related to topic modeling approaches to reading and

classification than to question answering process. Addition-

ally, after each iteration, the algorithm diffuses constraints

to other images within the group, proving effective for large

datasets.

Given the novel label collection approach, where each

user finally obtains decent clustering results after providing

feedback, we depart from literature like [2, 3], which deals

with multi-agent cooperation problem. Instead, we adopt

a majority voting system to determine the official training

dataset containing human insights.

The deep learning models play a dual role in feature learn-

ing and task transfer. In our quest for a robust model, we

focus on delving into feature learning methods, with a spe-

cial emphasis on the layers within deep network architec-

tures. When using this dataset for general image model

training, resampling is a common practice. However, es-

timating importance weights for high-dimensional data is

challenging. We employ the end-to-end Sinkhorn autoen-

coder technique. The VAE[4] infers the distribution of the

latent space by generating images and subsequently aligns

them with input images to approximate the true underlying

distribution. In the latent space, the clustering outcomes

are treated as groups of prototypes. Leveraging the con-

cept of the transport problem, we compute the average for

each group and randomly select prototypes, ensuring their

similarity to the samples. Throughout the training process,

the model learns to utilize these prototypes, facilitating the

transfer of human metrics to the AI agent in an effective
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manner.

2. Related Work

In terms of architecture, a VAE[4] is a pure generative

model, meaning it cannot control what it generates. Lever-

aging optimal transport theory for unsupervised learning

tasks, the Sinkhorn Autoencoder is distinguished by its

ability to efficiently integrate optimal transport-based regu-

larization, promoting structured latent spaces and enhanc-

ing interpretability in unsupervised learning. On the other

hand, a conditional VAE (CVAE[6, 11]) can generate based

on given labels, making it suitable for our COP-Kmeans

results. Another end-to-end solution is deep clustering cou-

pled with gumbel[11] to optimize discrete clusters. While it

lacks interpretability, as the learning of visual words is not

explicitly visible during vision task training.

3. Proposed Method

The model integrates an AI agent within the drag-and-

drop experiment. It encompasses a demonstration phase to

observe clustering results, a comparison phase where users

engage in image reorganization interactions, and a compo-

nent involving the calculation of must-link and cannot-link

constraints through a diffusion algorithm. This comprehen-

sive approach facilitates the seamless integration of human

feedback into the AI system, fostering a synergistic interac-

tion between the user and the intelligent agent.

Human insight learning is facilitated through the optimal

transport problem, enhancing the agent’s intelligence. The

core of the agent’s intelligence lies in the utilization of clus-

ter prototypes. This comprehensive framework enables a

seamless integration of human feedback and learning in the

AI system, creating a synergistic interaction between the

user and the intelligent agent.

3.1 GUI Design and Data Collection
To initiate our process, we apply watershed segmenta-

tion to images, converting them into rectangles and then

dividing them into small, overlapping patches (each con-

taining less than nine patches). This segmentation yields

a multi-resolution representation spanning pixel, concept,
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background, and object levels—an integral step for simu-

lating neural network feature learning and aiding human

comprehension. The utilization of overlapping patches en-

hances consistency and eliminates information gaps in the

human-machine interface.

3.2 Preparation

Figure 1: GUI design

The transformation of free-shaped segments into rectan-

gles addresses the limitations of the original segmentation,

which primarily captures texture, color, and pattern fea-

tures. The resulting clustered form rectifies contextual in-

formation deficiencies, assisting users in distinguishing im-

plied topics within each group. This action is especially

crucial as the original segmentation often only captures tex-

ture, colour, and pattern features, such as animal fur, which

can make it difficult for humans to distinguish the differ-

ences between each clustered group when organized in our

user interface, as shown in Figure 1. The incorporation of a

drag-and-drop interface empowers participants to rearrange

image sets, thereby improving thematic coherence.

Despite these advancements, ambiguous relations be-

tween pairwise patches persist. To address this challenge,

we design an algorithm for collecting constraints before im-

plementing COP-Kmeans. Users contribute set-wise con-

straints, which are then simplified, and pairwise constraints

are computed for COP-Kmeans. Additionally, we develop

a constraints induction algorithm specifically for running

semi-supervised COP-Kmeans.

3.3 Human-Aligned Variational Autoencoders
Given that participants may introduce subjective bi-

ases, unifying crowdsourced outcomes becomes challenging.

In subsequent experiments, we exclusively involve the de-

signer’s input through the interactive system to eliminate

unintended biases.

4. Experiments and Results

4.1 Dataset
We utilized the PascalVOC 2010 [1] training data and

supplemented it with 135 images from the COCO [9]

datasets. These additional images were labeled for var-

ious food items such as hot dog, pizza, sandwich, broc-

coli, banana, orange, apple, carrot, donut, and cake. This

was done to enhance the dataset and create a food super-

class. After segmentation, the dataset consisted of a total

of 9,305 images. These data were processed using CLIP

and VGG16 [10] to generate embeddings, which were sub-

sequently transformed into a 2D space using t-SNE [8]. We

initialized it with 20 groups using K-means. Due to the

large number of images, only the 20 points closest to the

center are displayed for each group.

To gather a wider range of data, we conducted this survey

online. All participants were recruited from Yahoo! Crowd

Sourcing and received a reward of 90 yen (approximately 60

cents). Through online experiments, we collected relevant

questionnaires on the constraints used in COP-Kmeans , as

well as comparative questionnaires regarding the thematic

differences between groups before and after COP-Kmeans,

and the satisfaction with the final expression of clusters.

4.2 User Operation Process
• Observe situations of zooming in and out and cluster-

ing. When the mouse hovers over an image, a border

surrounds the entire group.

• After observing, a questionnaire 2 about the current

representation of the group will pop up. Rate the ini-

tial impression of 20 clusters using a 7-point likert scale

in the questionnaire.

Figure 2: UI of clusters topic representation rating

• Select five groups that have a high degree of overlap.

Implement shows in Figure 3.

Figure 3: The clustering display webpage, users can zoom

in & out.

• The five selected groups are displayed in columns, and

users need to adjust the grouping of images by drag-

ging and dropping. Each group displays 100 images

that are closest to their respective centers. The back-

end service calculates pairwise constraints based on

user’s drag and drop actions. The constraints are then

used to update the clustering using the COPKmeans
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algorithm. The result is 20 new groups, each contain-

ing 20 images that are the nearest neighbors to the

new center.

• Repeat the process of selecting groups and organizing

images by dragging and dropping for four rounds.

• Conducting questionnaires, including one focused on

determining whether the images in each group are

topic-oriented, meaning they can be described by only

one or two words. A similar question to the previ-

ous one pops up initially. It also encompasses in-

quiries about final clustering performance. Further-

more, there is a questionnaire that addresses con-

straints, data comprehension, and other critical met-

rics for Explainable Artificial Intelligence (XAI).

4.3 User Experiment Results
For all users finally finish all task, we recruited partici-

pants with 18∼99 age limitation. we recruited 91 partici-

pants; there were 79 males and 12 females ranging in age

from 19 to 72 years for an average of 43.93 (SD = 10.99).

In this context, we’ve observed that if the initial topic rep-

resentation falls short, the entire process requires more iter-

ations, which can make user engagement more challenging

and potentially lead to dropouts. Consequently, we chose to

label and cluster the data using CLIP instead of directly ap-

plying k-means to the initial clustering. Despite the results

indicating a decline in the quality of topic representation, it

is important to note that this is not solely attributed to frus-

trations with the clustering update algorithm. Users consis-

tently express agreement with every update. More specifi-

cally, 54 participants reported a significant increase in con-

fidence, while 26 participants believed that it consistently

happened when asked the question, ‘How many rounds of

grouping, after drag & drop, led to meeting your expecta-

tions?’ Moreover, the comparison between initial and final

clustering results also supports that this ultimately leads to

improved clustering.

Figure 4: This shows how user suppose clustering result,

Q1~Q3 describe in 4.3.

Q1~Q3: Questions after completing all four rounds of

clustering updates is designed below.

• Do you think the final grouping is easier to understand

than the initial grouping?

• Do you think the final grouping can classify better than

the initial grouping?

• Does the final grouping result match your expectations

and intuition more than the initial grouping result?

4.4 Model Training Results
4.4.1 Implement Details

The model is a VAE-U-Net liked encoder-decoder5 struc-

ture based on the ResNet architecture.

Figure 5: It starts with the COP-Kmeans result, showing

clusters of images. These clusters are then transformed into

an embedding, represented by a bar of colors. The embed-

ding leads to a sampled latent vector ’Z’, which is then en-

coded and decoded to reconstruct an image, as shown by the

parrot’s images at the bottom. The process demonstrates

the encoding of image features into a lower-dimensional

space and their subsequent reconstruction.

4.4.2 Quantitative Results

This Figure 6 shows a plot of the training loss for a Vari-

ational Autoencoder (VAE) model, measured by the Nor-

malized Mean Squared Error (NMSE) and plotted on a log-

arithmic scale. The y-axis represents the NMSE on a log

scale, indicating the error between the reconstructed out-

put and the original input, while the x-axis represents the

number of iterations or epochs through the training data.

The plot illustrates an initial sharp decrease in NMSE,

indicating rapid reduction of reconstruction error. As train-

ing advances, NMSE diminishes at a slower pace, typical

during convergence. Fluctuations arise due to optimization

algorithm stochasticity, and “Smoothed NMSE” suggests

the plot underwent smoothing for a clearer trend depiction.

4.5 Qualitative Results
Figure 7 depicts a visual comparison of data clustering

before and after a training process. In the upper part of

the image, we see a scatter of various small images grouped

together but not distinctly separated. The images are con-

nected by lines of different colors, which might represent dif-

ferent relationships or categories. The layout seems some-

what disorganized, indicating that this is the state of the

data before training. In the lower part of the image, the

same small images are now more clearly grouped into dis-

tinct clusters, each encircled by colored outlines. The clus-

ters are more defined and separated from each other, sug-
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Figure 6: The overall trend in the plot indicates an im-

provement in the model’s performance over time, eventually

reaching stability.

gesting that the training process has successfully catego-

rized the images into groups based on their features or sim-

ilarities.

Figure 7: It demonstrates the effect of a training algorithm

on organizing and classifying visual data.

5. Conclusion and Future Work

Our approach seamlessly integrates human-machine fea-

ture learning, enabling a comprehensive evaluation of in-

terpretability and various machine learning metrics via the

loss function. The architecture operates without relying on

semantic labels. Nonetheless, the controlled sample distri-

bution in the latent space strongly suggests user thinking

signals. Beyond revealing patterns in user behavior dur-

ing drag-and-drop interactions, we delve into the semantic

structure of image data, resulting in interpretable visual

outcomes.

To refine our model, we aim for a more direct represen-

tation of the interaction between user-labeled data and the

training data flow within the learning model. Emphasizing

the distinguishability of the data distribution in the final

explanation is paramount for further improvement. Addi-

tionally, we are planning to collect diverse user feedback

through crowdsourcing, enhancing the exploration of hu-

man tags and refining the presentation of final explanations.
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