
ヒューマンロボットマルチモーダル言語インタラクションの
ニューラルネットワークモデル

Neural Network Model for Human-Robot Multimodal Linguistic

Interaction

守屋綾祐 ∗ 高渕健太 岩橋直人
Ryosuke Moriya Kenta Takabuchi Naoto Iwahashi

岡山県立大学
Okayama Prefectual Univercity

Abstract: This paper proposes a novel neural network model for human-robot multimodal

linguistic interaction, which learns the associations between human acts, comprising a linguistic

expression and a physical action, and the appropriate robot response acts to them. The model

uses encoder and decoder recurrent neural netowks (RNNs), convolutional neural network (CNN)

image feature extractors, and a multilayer perceptron (MLP). The input and output of the model

are a human action and the robot ’s response to it, respectively. Its originalities are: 1) three

input modalities (language, image, and motion), 2) two output modalities (language and motion),

3) support for two types of human requests (movement directive and visual question), and 4)

learning with no prior knowledge of words, grammar, or object concepts. Experimental evaluations

demonstrated that the model shows a promising performance, with the robot’s response to a human

instruction or question being accurate approximately 74% of the time.

1 INTRODUCTION

For multimodal linguistic interaction between hu-

mans and robots, it is necessary for both participants

to share the association between language and sensory-

motor perceptive information in a given situation. In

this regard, Winograd [1] pointed out the difficulties

in the realization of structural coupling and descrip-

tion of shared beliefs in systems. Harnad [2] reframed

the challenge and addressed it as a symbol grounding

problem.

Recent studies that address these problems primar-

ily focus on language acquisition by robots, particu-

larly word and grammar acquisition. A comprehen-

sive overview of such studies in the context of symbol

emergence problem has been provided by Taniguchi et

al. [3]. Takabuchi et al. [4] proposed a neural network

model that learns the association between robots’ ac-

tions and the syllable sequences that describe them.
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In their study, the input to the model is a human

action that is represented by the human motion and

an image of the environment in which this motion is

performed, and the output is a sentence (a syllable se-

quence) describing the input action. Their methodol-

ogy enables association between actions and sentences

without any prior knowledge of words, grammar, and

object concepts. Similarly, most language acquisi-

tion studies have focused on the association between

sensory-motor perceptive information and the corre-

sponding linguistic expressions. However, we believe

that learning models should progress beyond such as-

sociation models to realize multimodal linguistic in-

teraction between human and robots.

Certain studies have explored such multimodal lin-

guistic interaction models. For instance, Iwahashi et

al. [5] developed a multimodal linguistic interaction

model that enables robots to learn how to under-

stand human acts including speech and motion, and

to respond to them in unfamiliar situations. Their

model is implemented using statistical graphical mod-

els. Taguchi et al. [6] demonstrated a learning model

that enables robots to learn how to respond via speech
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and motion to simple human movement directives and

visual questions in specific situations. An example of

a movement directive is ”Place the big stuffed toy on

the box”, and examples of visual questions are ”What

is this?” and ”Which of these items is a box?” Their

model was the extension of the model by Iwahashi

et al. [5]. However, this model has limited ability in

word acquisition, and it needs to be given some prior

linguistic knowledge manually.

Next, we examine some neural network models from

the perspective of multimodal linguistic interaction.

The neural network model for visual question-answering

(e.g. [7]) is a type of multimodal linguistic interac-

tion model. In this model, the input to the model

is a visual question expression (a word sequence) and

the image regarding which the question is asked, and

the output is an answer expression (a word sequence).

Another type of multimodal interaction model is the

neural network model proposed by Saha et al. [8].

It enacts the role of a store clerk in Internet shop-

ping. Its input is a human linguistic request (a word

sequence) and the images of commercial goods that

the human linguistic request is made about, and its

output is a linguistic response (a word sequence) and

images for additional information, such as images of

recommended commercial goods.

However, in order to realize true human-robot mul-

timodal linguistic interaction, we need the model to

learn the association between human acts, which in-

clude linguistic expressions and motions under specific

situations, and the robots’ acts, which include linguis-

tic expressions and motions, as responses to them.

Thus far, no model has been proposed to address this

critical issue.

In this paper, we propose a neural network model

for human-robot multimodal linguistic interaction that

enables robots to learn the association between hu-

man acts and robots’ acts as responses to them. The

inputs to the model comprise human acts, which are

composed of three modalities: 1) a human linguistic

expression, 2) a human action, and 3) an image that

represents the situation in which the human performs

the act. The outputs comprise the robot’s response

act to the human act, and are composed of two modal-

ities: 1) the robot’s linguistic expression and 2) the

robot’s motion. This neural network model is imple-

mented using recurrent neural networks (RNNs) and

convolutional neural networks (CNNs). Its originali-

ties are as follows:

1. Three input modalities: A human linguistic

expression, human motion, and an image that

represents the situation in which the human per-

forms the act comprise the input to the model.

2. Two output modalities: A robot’s linguis-

tic expression and robot’s motion comprise the

output of the model.

3. Two types of human requests: A robot can

respond adaptively to two types of human re-

quests, namely, 1) a movement directive and 2)

a visual question about the objects in its view.

4. Learning with no prior information: Learn-

ing can be carried out from scratch without any

prior knowledge of words, grammar, and object

concepts. The linguistic expressions are repre-

sented by syllable sequences in the input as well

as the output.

The rest of this paper is organized as follows. Sec-

tion 2 describes the proposed neural network model.

Section 3 presents the experimental evaluation of the

proposed model. Section 4 discusses the experimental

results. Section 5 concludes the paper.

2 PROPOSED MODEL

To clarify the differences between previous models

and the proposed model, we contrast the inputs and

outputs of the models. In Takabuchi’s language ac-

quisition study [4], the input is image and motion in-

formation, and the output is a syllable sequence, as

explained in Section 1 (Fig. 1). In the visual question-

answering studies (e.g. [7]), the input is a word se-

quence and an image, and the output is a word se-

quence (Fig. 2).

By contrast, in the proposed model, the inputs are a

syllable sequence, an image, and motion information,

and the outputs are a syllable sequence and motion

information (Fig. 3).

2.1 Feature representations of inputs

and outputs

Next, the feature representations of the inputs and

outputs of the proposed model are described .

The syllable sequences in the input and output are

represented by Japanese syllable symbol (1-hot vec-

tor) sequences. The input syllable sequence describes



Figure. 1: Takabuchi’s language acquisition model

Figure. 2: Visual question-answering model

Figure. 3: The proposed human-robot multimodal lin-

guistic interaction model

a human request that is either a movement directive,

such as ”Raise up the box,” represented by the syl-

lable sequence [ha ko o a ge te], or a visual question,

such as ”What is this?” represented by the syllable

sequence [ko re wa na ni]. The output syllable se-

quence describes a robot answer to the human visual

question, such as ”It’s a lunch-box” represented by

syllable sequence [be N to o da yo].

Second, the input image is represented by RGB-

D information (continuous values). The images used

in this study include two foregrounding objects, as

shown in Figure 4.

Third, the input motion (human behavior) infor-

mation is represented by 1-hot vectors, and the out-

put motion (robot’s response behavior) information is

represented by a sequence of 1-hot vectors. The input

vector comprises information regarding human point-

ing and gazing behaviors. The pointing and gazing

information are encoded as 1-hot vectors. Examples

of such behaviors are shown in Figure 5. The motion

output vector sequence includes two types of informa-

tion: 1) information on which of two objects in front

of the robot it should grasp, and 2) the category of

the action that the robot should perform to execute

Figure. 4: Example input images

(a) Pointing (b) Gazing

(c) Pointing and Gazing

Figure. 5: Example images with human pointing and

gazing behaviors

this. An example of the motion output sequence is

[OBJ1, AGERU] for the robot motion ”Raise up the

left object,” where OBJ1 and AGERU represent the

object that the robot should grasp and the action that

the robot should perform to execute it, respectively.

2.2 Network architecture

Figure 6 shows the architecture of the proposed

neural network model. This neural network model

was implemented using Chainer [14]. The model is

composed of encoder and decoder RNNs [9], both of

which include long short-time memories (LSTM) [10],

an image segmentation (IS) module, CNN image fea-

ture extractors (CNN-FEs), and MLP. The encoder

RNN has 200 nodes, while the decoder RNN has 400

nodes.

The input syllable sequences are fed into the en-

coder RNN. In IS, each object image among two fore-

grounding objects in an RGB-D image is segmented



Figure. 6: Architecture of proposed neural network model for human-robot multimodal linguistic interaction

using depth information based on the assumption that

the object that the robot is supposed to grasp is lo-

cated in an area that the robot can reach. These

object image segments represented by RGB are fed

separately into CNN-FEs implemented with [11, 12,

13]. Each CNN-FE outputs 4096 dimensional fea-

tures. The motion information with these image fea-

tures is fed into the MLP. The outputs from the MLP

with the output from the encoder RNN are fed into

the decoder RNN. Finally, the decoder RNN outputs

syllable sequences as well as sequences representing

the motion information.

3 EXPERIMENTAL EVALUA-

TION

3.1 Setup

3.1.1 Data preparation

The prepared experimental data set D comprised

840 input-output pair samples, where the inputs rep-

resented human acts and the outputs represented robot’s

response acts as described so far. Each input (a hu-

man act) data consists of a syllable sequence (a hu-

man linguistic act (request)), an image (situation un-

der which the human request is made), and motion

information (a human behavioral act). Each output

(a robot’s response act) data consists of a syllable se-

quence (a robot’s linguistic act) or motion information

(a robot’s behavioral act).

Examples of input-output pair samples are shown

in Table 1. There were 340 movement directive and

480 visual question samples. The average lengths of

the input and output syllable sequences were 4.9 and

3.5 syllables, respectively.

Each of these input-output pairs included an image

taken with Kinect V1. Ten objects were used for the

data preparation; these are shown in Figure 7. We

note that although the number of objects were lim-

Table. 1: Examples of input and output (human act

and robot’s response act) pair samples
Input

(Human act)
Output

(Robot’s response act)

Syllable sequence
[ha ko o a ge te]

(Raise up the box)
　 -

Motion - Raise up the box

Syllable sequence
[ko re na ni]

(What is this?)

[e ru mo da yo]

(”It’s ERUMO.”)

Motion Pointing to erumo -

Syllable sequence
[pe n gi N o ma wa shi te]

(Move-circle the penguin)
-

Motion - Move-circle the penguin

Syllable sequence
[pi ka chu u sa ge te]

(Move down the pikachu)
-

Motion - Move down the pikachu

Syllable sequence
[a ge te]

(Raise up)
-

Motion Gazing at box Raise up the box

Syllable sequence
[ma wa shi te]

(Move-circle)
-

Motion Pointing to totoro Move-circle the totoro

Sylable sequence
[sa ge te]

(Move down)
-

Motion Pointing and gazing at kingyo Move down the goldfish



(a) be N to o (b)
cho kiNba ko

(c) e ru mo (d) ha ko (e) ki N gyo

(f)
komono i re

(g) ko pau pu (h) pe N gi N (i) pi ka chu u (j) to to ro

Figure. 7: The objects used for data preparation

(a) Raise up (b) Move down

(c) Move-circle

Figure. 8: The categories of robot’s response move-

ments in the experimental data

ited, all images were different. The categories of the

robot response act were“Raise up”,“Move down”,
and ”Move-circle”, and these are shown in Figure 8.

3.1.2 Evaluation metric

The experimental data D (840 input-output pair

samples) were divided into 700 pair samples for train-

ing and 140 pair samples for test. This division was

performed six times and six-fold cross validation was

performed.　 Learning the parameters of the neural

network model was executed based on a softmax cross

entropy criterion. The number of samples whose out-

Figure. 9: Training and test data accuracies in whole

samples

puts from the neural network model were completely

correct was counted, and their accuracies were calcu-

lated.

3.2 Results

First, the overall performance is presented as the

output accuracies in Figure 9. The training and test

data accuracies, obtained as the average among 6-fold

cross-validation experiments, were 98.6% and 73.5%,

respectively.

Second, the training and test identification accura-

cies for two types of human requests were 100% and

100% in movement directive samples, respectively, and

100% and 99.7% in visual question samples, respec-

tively (Fig. 10). From these results, we observe that

the proposed model can correctly distinguish between

the two types of human requests.



Figure. 10: Training and test data accuracies in move-

ment directive and visual question samples

Figure. 11: Training and test data output accuracies

in movement directive and visual question samples

Third, the training and test accuracies for two types

of human requests were 98.1% and 73.3% in movement

directive samples, respectively, and 99.2% and 73.4%

in visual question samples, respectively (Fig. 11). From

these results, we observe that the proposed model can

produce the appropriate robot responses for various

types of human requests.

Fourth, Figures 12 and 13 show the effects of two

types of input human motion, pointing and gazing.

Figure 12 shows the accuracies in movement directive

samples with pointing, gazing, both, and neither. Fig-

ure 13 shows the accuracies in visual question samples

with pointing, gazing, and both. From these results,

we can see that the proposed model could use the

pointing and gazing information to produce appropri-

ate responses by the robot, and that the objects were

selected appropriately with human motion informa-

tion, human linguistic information, or both.

Finally, the learning curves obtained by averaging

the six-fold cross validation results are shown in Fig-

ure 14. We see that learning was done normally. How-

Figure. 12: The effect of pointing and gazing informa-

tion in training and test data accuracies in movement

directive samples

Figure. 13: The effect of pointing and gazing infor-

mation in training and test data accuracies in visual

question samples

Figure. 14: Learning curves

ever, the difference between the training and test data

accuracies was large. This might be owing to the small

size of the training data. Increasing training data

might reduce the difference in accuracies and improve

the learning performance.



4 DISCUSSION

From the experimental results, we can confirm that

the proposed neural network model successfully achieved

the following four original features as mentioned in

Section 1.

1. Three input modalities (language, image, and

motion)

2. Two output modalities (language and motion)

3. Two types of human requests (movement direc-

tive and visual question)

4. Learning with no prior knowledge of words, gram-

mar, and object concepts

However, there are many limitations that should be

addressed in future work. These are as follows:

The number of objects: The number of foreground-

ing objects in each image was fixed to two by

considering the simplicity of the network archi-

tecture. However, in future, to deal with a vari-

able number of objects, an RNN might be used.

Alternatively, the input image could be processed

without an object image segmentation process.

Human pointing and gazing behaviors: The infor-

mation regarding pointing and gazing behaviors

was manually provided in the data preparation

process in this study. In future, we plan to use

raw data of human behavior without any cate-

gorization processes.

Speech recognition: Input syllable sequences were

manually transcribed in the data preparation

process in this study. In future, we plan to use

an automatic syllable recognizer. We note that

it was reported in Takabuchi’s language acquisi-

tion study [4] that the automatic syllable recog-

nition process did not introduce a significant dif-

ference in the performance of their neural net-

work model.

Further improvements and extensions can also be

considered, as follows.

Learning data: Based on the experimental results,

it was found that the performance might be af-

fected by the small size of the training dataset.

It can be considered that accuracy can be fur-

ther improved by increasing the number of data.

We plan to record the state of interaction be-

tween two human beings and introduce it as

learning data.

Evaluation: In this study, we experimented with and

evaluated neural networks. As we plan to in-

corporate the proposed neural network model

into a robot system, we would like to continue

to evaluate the model from the viewpoint of

human-robot interaction by actually operating

a robot in the future.

5 CONCLUSION

A novel neural network model for human-robot mul-

timodal linguistic interaction was proposed. The in-

put to the model comprised information about a hu-

man act, and the output from the model was infor-

mation on a robot’s response act. The experimental

evaluations showed that the model exhibited the fol-

lowing capabilities: 1) three input modalities, 2) two

output modalities, 3) two types of human requests,

and 4) learning with no prior linguistic and object

knowledge.
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